首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YAN Jinxiu 《隧道建设》2019,39(4):537-544
In this paper, the current situation of tunnel engineering in China is introduced, especially the achievements obtained in the field of tunnel construction since the reform and opening up over 40 years. The 34 708 km long traffic tunnel built after reform and opening up takes 96% of the total length. The challenges met and achievements obtained during the key tunnel projects construction in China are presented emphatically from the aspects of extra long tunnel, deep tunnel, large tunnel, tunnel at high altitude and tunnel in complex environment. It is pointed out that: the main technological challenges during extra long tunnel construction are the accuracy of geological investigation, rapid construction and running disaster prevention; the main challenges during deep tunnel construction are high geostress, high waterpressure and high geothermal; the large tunnel faces high design and construction challenges; the challenges during tunnel construction at high altitude are freezing thawing and hypoxia; but still, many tunnels have been built under complex environments, including karst, gas, high geostress, high waterpressure, expansive rock, etc., and many technological breakthroughs have been achieved. The development trend of tunnel projects in China is proposed from the aspects of investigation, design, construction and operation, turning the development speed into development quality. It is generally acknowledged that the tunnel engineering achievements in China over the past 40 years benefit significantly from the development of international tunnel technology. Meanwhile, the development of tunneling technology in China has also greatly contributed to the international tunnel engineering development.  相似文献   

2.
LI Jiangao  WANG Changhong 《隧道建设》2019,39(10):1678-1689
The project under study is an overlapping twisted shield bored tunnels in weak water rich strata. The purpose of the study is to solve the key technological problems in the construction of the project. The optimal construction sequence of the overlapping twisted shield tunnels is determined according to the engineering geological conditions, the surrounding working environment, and theoretical analysis on the spatial relationship of the four tunnels, and verification control are carried out via monitoring means. The tunnel construction is properly timed, smart self propelled movable support jumbo is adopted, and grouting reinforcement technology is used to ensure the construction safety of the overlapping twisted shield bored tunnels. The grouting pre reinforcement technology and the clay shock technology are adopted to ensure the safety of the surrounding buildings. The technologies for the construction of the overlapping twisted shield bored tunnels described in this paper is of great significance for the construction of similar overlapping tunnels with high shield launching/receiving risks and crossing under important structures with small clearance.  相似文献   

3.
XIAO Mingqing 《隧道建设》2018,38(3):360-371
In the 21st century, the underwater tunnels have advanced rapidly in China. A large number of projects, completed or ongoing, have greatly promoted the advancement of underwater shield tunnel technologies in China and in the world. The development history of the underwater tunnels in China is summarized, and the technical challenges and breakthroughs encountered and achieved during the construction of many tunnels are presented, as represented by Nanjing Yangtze River Tunnel and Shiziyang Tunnel of Guangzhou Shenzhen Hong Kong High speed Railway. The characteristics and challenges of some representative underwater tunnels during construction, including Road Railway Yangtze River Tunnel in Sanyang Road, Shiziyang Tunnel of Foshan Dongguan Intercity Railway, Yangtze River Tunnel of Suzhou Nantong UHV Power Transmission and Transformation Project; and projects to be constructed, such as Pearl River Estuary Tunnel of Shenzhen Maoming Railway, Shantou Bay Subsea Tunnel of Shantou Shanwei High speed Railway, and Nanjing Heyan Road Yangtze River Tunnel, are presented as well. The development trend of China′s underwater shield tunnels, including from single soft soil formation to complex soil formation, from large diameter to super large diameter, from medium water pressure to high and ultra high water pressure, from ordinary to special and unfavorable geological conditions, from seismic regions with moderate intensity to those with high intensity, and from single construction method to combination of multiple methods, are analyzed. It is pointed out that the technical fields still require further study and innovation, and the areas still require further enhancement and innovation, such as the norms, codes, designs, constructions, equipment, materials and management.  相似文献   

4.
The development and utilization of urban underground space is an important way to alleviate the shortage of urban resources, improve the environmental conditions and the quality of life of residents. It has important practical significance. The status of underground space utilization in China and other countries and the problems that need to be solved in China are analyzed. Combined with the general trend of intelligent, green, deep and comprehensive development of urban underground space, several suggestions for the development of underground space in China are put forward. Based on the characteristics of the development of underground space in foreign cities, the status quo of domestic underground commercial street, underground road and parking system, subway, integrated pipe gallery, underground complex, underground municipal system, underground storage and logistics systems, relevant laws and regulations and standard specifications are analyzed, respectively. The shortcomings of laws and regulations, management mechanism, urban planning, development protection, information sharing, disaster prevention and investment and financing mode in the development and utilization of underground space in China are analyzed in depth. Combined with the general trend of development of intelligent, green, deep and integrated development of underground space, it is proposed that in addition to the theoretical system and key technologies for the development of underground space, comprehensive management, overall planning, innovative investment and financing, income models and policies and laws that are in line with national conditions are needed.  相似文献   

5.
The improvement in the operation speed of the transportation project means the progress and development of the construction technologies in transportation projects. In this paper, the following factors restricting the further improving of the speed of high speed railway are analyzed: as the operation speed increases, the trains in the dense atmosphere are subject to the wind induced resistance and various resistances caused by the friction between the wheels and the rails and by the irregularity of tracks, and the noise will also increase with a high power. Therefore, the economy and safety issues involved in the operation have become the main factors restricting the further improving of the speed of high speed railway. A scheme of vacuum pipelines of underwater vacuum tunnel and/or subwater bridge is proposed in this paper: the pipelines and cars are sealed and vacuated to form the quasi vacuum. The transportation system of the vacuum maglev train at ultrahigh speed with the HTS maglev technology can achieve the operation speed more than 4 times that of the existing HSR train (about 1 200 km/h). Key technologies for constructing the vacuum maglev tunnels/subwater bridges in respect of construction plans, vacuating and sealing, as well as maglev trains are introduced in this paper. The subjects to be further studied on the vacuum HTS maglev tunnels (pipelines) are analyzed from the aspects of technology, management, construction costs, operation expenses, candidate project, airtight materials for cars and evacuation in case of emergencies. It is recommended that "cross sea maglev train in vacuum tunnel" should be developed in the eco tourism project between the coastal cities and their neighboring islands and a series of necessary technical tests should be conducted during the trial operation, so as to obtain related experience. Based on the experience and lessons learned, the transportation system at ultrahigh speed may be implemented for strait crossing projects in China. Finally, a brief introduction to the research on HSR trains at ultrahigh speed in countries such as China, the United States and the Netherlands is presented in this paper. The development of vacuum pipeline transportation can drive the development of China′s transportation modes in a faster, safer and more energy efficient manner, facilitating the development of the fifth generation of transportation industry and its driving role in the social and economic development, and promoting the integration and progress of the economy of China or even the world at a higher speed.  相似文献   

6.
Seven tunnels across Jinping Mountain are arranged for Jinping Ⅱ Hydropower Station, with a total length of about 120 km. Among them, four headrace tunnels have a length of 16.67 km, an excavated diameter of 12.4-14.6 m, and a cover depth of 1 500-2 000 m in general. The maximum cover depth is 2 525 m, and the maximum external water pressure is more than 10 MPa. The tunnels are featured by great length, great depth and large diameter. It is the largest and most difficult among the underground tunnel groups built or under construction in China and even the world. With complex hydrogeological conditions and special topographical conditions along the tunnels, many challenging problems, such as rock burst under high in situ stresses, groundwater inrush in karst strata and failure of loading bearing structure, were encountered during construction. A great amount of groundbreaking studies were carried out regarding these problems. The key technical problems during construction of extremely large and deep tunnels were solved successfully. Safe and rapid tunnel construction and stable operation were achieved. The hydropower station started operation in 2014 and has been in a safe and stable operation state. The successful construction of headrace tunnels of Jinping Ⅱ Hydropower Station can provide some experiences and reference for deep tunnel projects in the world.  相似文献   

7.
杭州狭长软土基坑支护侧移规律与解析预测方法研究   总被引:1,自引:0,他引:1  
In order to reduce the influence of deep narrow foundation pit construction on adjacent properties in urban area in Hangzhou, the characteristics of the support wall lateral deflection are analyzed and the corresponding analytical prediction method is proposed. The support wall lateral deflections of the deep narrow foundation pits at Wenyi West Road, Qingchun Station, Qiutao Station, Xingtang Station and Qingnian Station in Hangzhou soft clay are monitored and compared with those of deep foundation pits in Zhejiang and deep narrow foundation pits in Shanghai, Taipei and Singapore. The results show that the maximum support wall lateral deflection of the foundation pit on Wenyi West Road, 0.20%He ~0.25%He, where He is the maximum excavation depth, is close to that in Shanghai(0.15%He~0.41% He), but is smaller than those in Zhejiang, Taipei and Singapore(0.27% He~0.62% He); which is related to the high tangential modulus of Hangzhou soil and small width of the foundation pit. The support wall lateral deflection of the narrow deep foundation pits in Hangzhou can be precisely predicted based on the representative stress strain relationship at site and the modified mobilisable strength design (MMSD) method.  相似文献   

8.
Tsinghuayuan Tunnel of Beijing Zhangjiakou High speed Railway is the first fully prefabricated high speed railway tunnel in China. The supporting structure, subrail structure, and subsidiary structure of Tsinghuayuan Tunnel are all prefabricated in the factory. The strength, deformation and stability of subrail structure are analyzed by numerical simulation method; a kind of three block type of subrail prefabricated structure is put forward according to prefabricated assembling technology; and the subrail space is used to ventilate and rescue under the stability condition. The connection between subrail structure and shield segment is the key to fully prefabricated assembling technology. By introducing the grouting technology and construction keys of subrail structure, the stress on subrail structure and shield segment can be balanced. The results can provide reference for similar projects in the future.  相似文献   

9.
The total length of the 2nd stage water transfer project in the northern area of Xinjiang of China is 540 km. The project consists of three tunnels, namely Xi Er (XE) Tunnel, Ka Shuang (KS) Tunnel and Shuang San (SS)〖HJ6.5mm〗 Tunnel, with lengths of 139.04 km, 283.27 km and 92.15 km respectively. All of these three tunnels have deep cover and are super long tunnels, and 95.6% of the total length of these three tunnels is constructed by TBMs. KS Tunnel is the longest water tunnel built or under construction in the world. In the paper, the trial TBM boring scheme and schedule of the water transfer project are introduced; the geological conditions revealed are statistically analyzed; and main project difficulties, i.e. durability of key equipment in long distance driving, passing through fault and fracture zones, water inrush, single head ventilation and transportation in long distance tunneling, anti slope drainage, and rock breaking efficiency and boring efficiency, are put forward. The adaptability of the TBMs used is analyzed from the aspects of adaptability to different surrounding rocks, adaptability to bad geological conditions and countermeasures, long distance ventilation and belt conveyor mucking and countermeasures, and TBM boring stability (such as equipment availability, boring time proportion, system malfunction and operation time). The following conclusions are obtained: (1) Accurate geological survey is the precondition of efficient tunneling. (2) The open type TBM can better adapt to Grade Ⅱ and Ⅲ of surrounding rocks, jointed and fractured zones and small faults; the adaptability of the TBMs used to the large scale fault fracture zones and water rich strata in this project is poor, and it needs to be improved in aspects of TBM equipment, supporting and construction technology. (3) The average availability of the TBM equipment in the trial boring stage is 89.9%, however, the malfunction rate of some ancillary equipment is high, particularly oil leakages occur to the main bearing seals; in order to achieve long distance tunneling, it is necessary to further improve the reliability and durability of the TBM equipment. (4) The average net boring efficiency in the trial boring stage is 296%, and TBM1 in Section Ⅱ of SS Tunnel achieves up to 45.2 % net boring efficiency; and highest monthly progress rate is 1 280 m, which created the highest record of the open type TBM boring in China. (5) TBM need to make great efforts to achieve 90% of the equipment system′s availability and over 40% of the tunneling efficiency.  相似文献   

10.
The GIL chamber in the utility tunnel under Tanxinpei Road in Wuhan is an ultra long closed structure. Heat exhaust ventilation is the controlling problem in engineering design for the project, especially the heat transfer between the tunnel and the surrounding soil in the long term. A one dimensional model for the GIL chamber is established by using the IDA tunnel simulation software to analyze the short term and long term heat exhaust, respectively. The short term heat exhaust is analyzed for the typical climate of summer/winter/transitional seasons and the long term analysis is carried out under the seasonal changes in 1 year/ 10 years/ 30 years. The short term analysis results indicate that the slope of the utility tunnel and the temperature gradient lead to lower ventilation efficiency in certain areas. The long term analysis results show that the air temperature in the GIL chamber and the wall temperature rise most pronouncedly during the first 5-6 years of operation and remain stable for the remaining time within 30 years. It also is found that around 10%-40% of the heat is released to the surrounding soil. A three dimensional model of the GIL chamber is established using the fluid mechanics based program, OpenFOAM, for 3D simulation. The effects of cables and brackets on the temperature and velocity fields in the chamber are analyzed. The effect of non uniformity of velocity distribution and the stack effect on the temperature distribution in the GIL chamber are revealed. The results can provide some reference for the design and specification revision of heat exhaust ventilation for similar utility tunnels in the future.  相似文献   

11.
"Although the production concentration rate of auto makers in China is not high, many businesses cannot reach an economic size, and total production is less than half that of Ford's worldwide output, yet the profit rate is high and returns are good. The average profit of medium-end cars is 50,000 yuan per car and that of high-end cars is even higher. A car, priced abroad USD 9,000, is sold at over 200,000 yuan in China. The prices of cars in China  相似文献   

12.
Shenzhen Chunfeng Tunnel is one of the shield tunnels under construction with the largest diameter in mainland of China. The whole tunnel passes through the coastal composite stratum, with rock from broken to integral, and the strength of some sections reaches 173 MPa. The tunnel under crosses the railway, subway, bridge and multiple buildings closely in a complex and sensitive environment. Combining the stratum situation and characteristics of large diameter shield machine, the problems that will be faced during the construction process, including low rock breaking efficiency of shield machine, discharge stagnation and jamming of the chamber, settlement control in sensitive environment, and impact of large diameter shield segment floating, cracking and construction on urban traffic, are analyzed. Based on the engineering experience, the following solutions are proposed: a shield rock breaking efficiency solution for the complete extremely hard rock section, settlement control measures for adjacent buildings and structures of shield driven tunnels, solutions for jamming and discharge stagnation of large diameter slurry shield, comprehensive measures for prevention and control of shield segment floating and cracking, and a slag treatment plan for downtown areas. Chunfeng Tunnel tests the wisdom of Chinese builders with its tremendous volume and strict construction standards, and it also has certain reference significance for other similar projects.  相似文献   

13.
Confronted with accidents in a shallow?buried weak tunnel using the bench excavation method,such as great subsidence and cracks in the ground surface as well as those in the preliminary support,a double downside drifts construction method was presented The drifts were used to detect geological conditions and reinforce the lower parts of the tunnel Its construction procedures and load transiting mechanism were then described Its Construction behavior was also studied by numerical simulation using software MIDAS The results show that (1) double-side drifts can improve tunnel load,the key construction step is arch ring excavation and core soil is good to keep tunnel steady; (2) weak parts mainly l ocate at wall foot of drifts,wall foot and crown foot of tunnel,and the connections; (3) reinforcement of soil under the drifts has no apparent effect on improving rock deformation and support load Advice on construction was proposed that main parts to be reinforced are drifts (its foot depth,connection parts with tunnel,and its corners) and core soil should be kept if rock is unsteady and needs reinforcing  相似文献   

14.
Two major concerns have been drawn in the process of shield construction: one is the difficulty in selecting a shield machine; the other is the high risk of opening for cutterhead changing. Based on the existing shield systems, a parallel dual mode shield with freezing cutterhead is developed by optimising internal structure and equipment and carrying the freezing device. The dual mode shield construction technology and freezing cutterhead technology are successfully carried out on project cases including Guangzhou Metro Line 9, Guangzhou Metro Line 21 and 220 kV Shijing Huanxi Electric Tunnel (Xiwan Road Shisha Road Section). The parallel dual mode slurry/EPB shield not only has the functions and advantages of slurry shield and EPB shield but also can switch into slurry/EPB mode for different strata and environments easily. Thus, it can achieve rapid shield tunneling. By combining the shield with the freezing system, the soil around cutterhead can be frozen to provide conditions for chamber opening under atmospheric condition. Meanwhile, it is also compatible with dual mode shield.  相似文献   

15.
LI Bo  BAO Zhen 《隧道建设》2019,39(5):820-831
The author focuse on the great challenges encountered during the tunneling process in the Wuhan Sanyang Road Tunnel, and the key techniques adopted to solve those problems. When tunneling in composite strata, engineers inevitably face problems such as inefficient excavation, excessive tool wear, excavation face instability and the risk of clogging. The TBM used in the project allows tool change under atmospheric pressure, which improves the efficiency of tool change and eliminated the risk of casualties during hyperbaric interventions. In terms of the tool wear and clogging, the authors propose technical solutions as follows: the optimization of the tool′s type and configuration, improvement of the central flushing system and chemical dissolution of clogging. The results indicate that through the countermeasures proposed, the tunneling efficiency can be improved effectively. They also reduce the cutter change frequency and eliminate the risk of TBM downtime. The technical achievements obtained in the construction of the Wuhan Sanyang Road Tunnel can provide technical reference for the construction of large diameter shield tunnels in composite strata in the future.  相似文献   

16.
In recent years, with the help of good national policy support, the design, manufacturing and construction technology for tunnel boring machine (TBM) in China have been greatly improved; but compared with foreign relatively proven technology, there is still a certain gap for domestic technology development and engineering application. Based on the situation analysis of research and application of TBM in China and abroad, the research work for TBM design is carried out according to the complex geological conditions of Gaoligongshan Tunnel on Dali Ruili Railway as follows. (1) The prototype disc cutter rock breaking and scaled disc cutter wearing experiment are carried out to provide reference for adaptable design of TBM cutterhead and key parameter calculation. (2) The TBM design scheme is discussed from the aspects of high efficiency rock breaking of cutters and cutterhead, TBM over excavation, integrated support system, etc. (3) Two kinds of advanced geological prediction technology, i.e. HSP method and RTP method, are researched. The study results can provide reference for design and manufacture of TBM with high adaptability in complex geology and construction application in Gaoligongshan Tunnel.  相似文献   

17.
For recent ten years, the slurry shield tunnelling technology has been widely used in major underneath river/ocean tunnels and urban metro constructions in China. With the gradual maturity of the slurry shield technology, especially the large diameter slurry shield technology, the numbers of projects and shield machines have been among the highest in the world. However, great challenges arise during the construction of the slurry shield projects under complex geological conditions, such as the stability of the excavation face, cutting tool abrasion, opening the chamber and repairing the machine, slurry circulation with slag, and remanufacturing of the shield. Therefore, it is necessary to investigate the development of slurry shield construction technology in China. Based on typical cases of slurry shield projects, this study analysed the main problems of the slurry shield in the construction process and summarised the current experiences and key technologies. Considering the actual situation of the slurry shield technology, this study clarifies its development direction in China, which is significant to promote the development of the slurry shield technology in the world.  相似文献   

18.
LI Ning  LI Guoliang 《隧道建设》2018,38(3):481-493
Lanzhou Chongqing Railway is located in the uplift margin of the Tibetan Plateau, where the geological environment is very complicated and special. Based on numerical analysis and field tests, the physical and mechanical properties, micro structure, and complicated water related stability of the Tertiary sandstone are studied. A comprehensive dewatering system integrating deep surface wells and vacuum light well points in tunnel is used and the construction technique featured with advance reinforcement by horizontal jet grouting for the full face of aquiferous silty fine sand tunnels is invented to solve the problem of the Tertiary quick sand. In addition, the classification method for deformation potentiality in design and dynamic adjustment in construction of tunnels in high geostress soft rock is established, the deformation control technology combining active stress release and passive control according to the deformation mechanism is developed, an automatic real time monitoring system for operation is invented, and a complete technological system of design, construction, and operation management of soft rock tunnels is built. Moreover, the TBM equipment parameter design principles are put forward, the parallel lining and multi stage belt conveyor mucking system is researched, the phased ventilation technology is invented and thus the problem of safe and fast long distance construction by large diameter TBMs is solved. The technological achievements have filled in gaps and facilitated development of the tunnel construction technology.  相似文献   

19.
YOU Xinhua 《隧道建设》2018,38(10):1603-1611
Based on the introduction of the history and typical projects, the state of art of urban utility tunnels in China are mainly discussed in terms of construction mode, planning and design, construction and operation management. Then the significant technologies used for utility tunnels in China such as the green construction concept, intensive planning/design concept, intensive planning/design method, formwork slipping technology, precast/assembly technology and BIM based intelligent management technology and so on are elaborated. Finally, prospectives of utility tunnels in China are presented.  相似文献   

20.
HE Chuan  FENG Kun  SUN Qi  WANG Shimin 《隧道建设》2017,37(11):1351-1365
Structural durability of shield tunnel lining is a trans scale problem from mesoscopic material to macroscopic structure. With increasing amount of shield tunnel construction in China, the issues related to structural durability become more prominent. In this paper, the typical applications of shield tunnel lining in China and other countries are introduced. The service conditions and diseases of shield tunnel lining structure are then analyzed. The factors affecting the structural durability of shield tunnel lining, such as material, design, environment, construction, management and maintenance, are summarized. The research results and progress related to structural durability of shield tunnel lining are then reviewed in terms of tunnel durability, durability evaluation and prediction, durability ensuring techniques. Finally, the existing problems and future research directions in structural durability of shield tunnel lining are discussed in terms of durability ensuring techniques, impact of diseases and accidents, tunnel evaluation and rehabilitation, arrangement of secondary lining and establishment of dynamic evaluation system for structural durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号