首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
受地下空间限制,城市地铁双线隧道间净距较小,后掘进盾构隧道施工将引发地层二次扰动,导致额外地层变形,对临近构筑物安全威胁尤甚。当前研究主要基于地表横向沉降曲线研究双线隧道掘进引起地表的沉降规律和地层扰动特点,但地表横向沉降曲线不能全面反映前、后掘进盾构隧道施工引起的地表沉降发展过程及规律。以杭州地铁某区间双线盾构隧道地表沉降长期监测数据为依托,采用地表沉降时程曲线和地表横向沉降曲线相结合的方法,分析双线盾构隧道前、后掘进引起的地表沉降规律。研究表明,后掘进隧道引起的土体损失率在0.6%~0.8%之间,地表最大沉降量在15.2~20.7 mm之间,均大于先行隧道引起的土体损失率和地表最大沉降量;由于后掘进盾构对地层的二次扰动,导致最终地表沉降槽曲线并不严格关于双线隧道轴线中点对称分布,地表沉降最大值略微偏向后掘进隧道轴线。通过地表沉降时程曲线发现,先行盾构通过监测断面后,地表沉降迅速发展,主要沉降范围在隧道轴线6 m范围内;由于先行盾构隧道掘进扰动,在后掘进盾构到达前2天(约3倍盾构直径距离)地表开始发生明显的沉降;在后掘进盾构施工影响下,所引起其轴线处地表沉降量大于先行掘进盾构所对应的轴线处沉降值。  相似文献   

2.
杭州地区某盾构区间施工地表变形预测参数的分析与确定   总被引:1,自引:0,他引:1  
赵军 《隧道建设》2015,35(10):1003-1009
以杭州地铁某盾构区间隧道施工为背景,分别对盾构隧道上浮和盾构隧道水平2种工况建立计算模型,并计算盾构掘进施工引起的地表沉降,在每种模拟工况计算中取不同的地层损失率对地表沉降进行计算。将不同工况、不同地层损失率的计算结果与实测数据进行对比分析,并利用Peck公式计算结果进一步确认,以确定不同工况下的地层损失率:盾构隧道上浮工况下地层损失率约为1.9%;盾构隧道水平工况下地层损失率约为1%。以期为杭州和其他地区盾构施工引起的地表沉降预测提供参考。  相似文献   

3.
唐明明  刘淼 《隧道建设》2015,35(2):115-120
交叠隧道在施工过程中对周围地层存在反复扰动,针对其力学行为和变形规律的研究十分有必要。以西安地铁临潼线左右线交叉叠落盾构隧道施工为背景,研究线路左右线隧道空间交叉转换施工下周围地层的变形规律及后施工隧道(左线)对已完成隧道(右线)的扰动情况。研究表明:隧道施工完成后,地表沉降槽整体呈条带状且沿区间走向分布;地表沉降随隧道垂直交叠程度的增加而增加,地表沉降最大值为9.79 mm,位于左右线完全垂直交叠位置处;左线隧道对先施工完成的右线隧道的影响主要表现为侧向推挤和增大地层附加应力的作用,但在垂直交叠位置扰动影响较小;施工扰动引起右线隧道最大水平位移为1.75 mm,最大沉降为1.97 mm。  相似文献   

4.
吴红博  周传波  蒋楠  高坛 《隧道建设》2019,39(2):219-226
为分析圆砾地层双线地铁隧道分别采用泥水和土压平衡盾构施工时的地层变形特征,以南宁地铁3号线东葛路站-滨湖路站区间盾构施工工程为背景,采用现场监测数据分析2种盾构施工时的地表横向沉降特征和监测点纵向沉降历程特征。利用FLAC3D软件对2种盾构工法进行简化模拟,验证模拟方法的可行性; 设计双线地铁隧道分别采用土压平衡盾构和泥水平衡盾构、全部采用泥水平衡盾构、全部采用土压平衡盾构3种工况的模拟方案,研究3种工况下的地层变形特征。研究结果表明: 1)双线地铁隧道采用2种类型盾构施工时,地层沉降曲线偏向土压平衡盾构施工的隧道一侧; 采用同种类型盾构施工时,地层距离隧道越近,沉降曲线呈“W”特征越明显; 2)双线地铁隧道采用土压平衡盾构施工时各地层沉降较大,地表横向沉降影响范围约50 m; 采用泥水平衡盾构施工时各地层沉降相对较小,地表横向沉降影响范围约30 m; 3)3种工况下,双线地铁隧道采用土压平衡盾构施工时引起的地表水平位移最大。  相似文献   

5.
为了预测圆形隧道施工引起地表以下不同埋深地层沉降特征,首先,通过理论推导不同地层最大沉降位移与沉降槽宽度系数的函数关系;然后,建立包括试验台架、地层模型、圆形隧道开挖模型以及测量地层变形装置的平面应变模型试验系统。通过理论解析和模型试验可知:1)地表以下地层的最大沉降位移与沉降槽宽度系数成反比;2)不同深度地层的沉降位移随着地层埋深的增加而增大,且地表以下地层沉降槽曲线仍然符合正态分布;3)通过对模型试验数据进行回归分析,得到黏土地表以下不同深度地层沉降槽宽度系数的计算公式,从而为预测圆形隧道施工地表以下不同深度地层竖向位移提供了一种可靠的计算方法。  相似文献   

6.
针对盾构始发施工造成地表沉降过大、导致工程事故时有发生的问题,采用岩土通用软件FLAC3D建立盾构始发三维模型,对北京、杭州、南京和上海4个典型地区代表土层盾构始发施工的全过程进行模拟计算,总结出各典型地区盾构始发施工对地表变形的影响规律,并提出相应的施工建议。研究结果表明,相同施工条件下:1)不同地层盾构始发地表沉降差别较大,黏性土较砂性土沉降槽影响范围相对较大,中心点沉降量相对较小;2)典型地区均为黏性土条件下地表沉降较小,非黏性土地层条件下地表沉降较大且在横向基坑边界处地表差异沉降较大;3)典型地区从地表沉降控制效果由好到差排序为北京〉南京〉杭州〉上海。  相似文献   

7.
曾德成  荆涛 《路基工程》2018,(4):151-155
针对乌鲁木齐地铁1号线新疆大学—二道桥区间盾构隧道沿线近距离侧穿匝道桥扩大基础时的沉降问题,基于实际地层条件和地表沉降监测数据,结合最小二乘法和Peck理论公式拟合出某典型断面的实测地表沉降槽曲线,得到相应的地表最大沉降值Smax以及沉降槽宽度i等拟合结果,进而反演分析地表沉降槽宽度系数K和地层损失率η并给出建议值。结果表明:土压平衡盾构机穿越某泥沙地层断面时,运用Peck公式可以拟合沉降趋于稳定时的地表横向沉降槽曲线,地表沉降槽宽度系数  相似文献   

8.
杜洪泽  李守巨 《隧道建设》2020,40(Z1):241-246
以沈阳地铁1号线隧道为例,利用有限元方法研究盾构施工引起的横向地表沉降问题。引入地层损失和地应力释放的概念,分别在不同地层损失率、不同地应力释放率条件下,建立有限元模型进行计算。根据实际施工时监测到的地表沉降值与有限元模拟的地表沉降值进行比较,发现地表沉降值与地层损失率和地应力释放率成正比,〖JP+1〗并通过最大地表沉降值的对比确定了该路段施工引起的地层损失率为1.747%,引起的地应力释放率为74.071%。利用同样的方法,确定了10座城市隧道开挖过程中引起的地层损失率区间为0.5%~2%、地应力释放率区间为60%~80%,并将地层损失率为1.747%和地应力释放率为74.071%时的衬砌混凝土管片处的最大弯矩与无地层损失、无地应力释放率模型管片处的最大弯矩值进行对比,可以发现最大弯矩值有明显的减小,分别减小了76.16%和71.82%。且2种方法得到的弯矩值非常接近,可以认为地层损失率模型和地应力释放率模型是等效的。  相似文献   

9.
为深入了解富水软弱地层中浅埋暗挖隧道施工引起的地表沉降特征,以杭州紫之隧道北口浅埋暗挖段工程为依托,采用现场监测数据分析与数值模拟计算相结合的方法,分析地下水渗流作用对地表沉降的影响。分析结果表明:1)在地下水渗流作用下,横向和纵向地表沉降槽宽度系数的拟合值均大于文献中对黏土的建议值;2)在隧道施工过程中,地层孔压下降范围逐渐扩大,地下水渗流是沉降槽宽度增加的主要原因;3)地表沉降主要发生在隧道外侧起拱线处、与水平方向成45°+φ/2的斜线之间区域(φ为隧道上覆土层平均内摩擦角)。  相似文献   

10.
盾构隧道施工地表沉降数值分析研究   总被引:6,自引:1,他引:6  
隧道施工引起的地层损失所导致的地表沉降变形预测和控制,是隧道工程领域重要的研究课题之一。以盾构隧道开挖引起地表沉降变形为研究对象,采用有限元数值分析软件模拟盾构隧道施工过程,分析盾构隧道引起的土体应力场、位移场变化,对比分析不同的地层损失、不同的土体本构模型、土体排水和不排水条件下隧道施工引起的地袁沉降变形规律,并进行了不同影响因素的敏感性分析。结果表明,地表沉降槽近似正态分布曲线,地表沉降的主要影响因素依次为隧道埋深、内摩擦角、压缩模量、粘聚力和泊松比;提出了盾构隧道施工引起的地表沉降计算模型,并采取有针对性的措施来减少地表沉降,减小对周围环境的不良影响。  相似文献   

11.
为解决北京地铁隧道施工不同影响区划分和影响范围确定的不准确问题,对北京地区13 条地铁线路、903 份隧道工程的地表横向沉降槽资料进行分析,根据施工方法和地层条件的不同,分别对盾构法和矿山法施工隧道在黏性土地层、砂卵石地层等区域的沉降槽Peck 公式拟合参数进行统计分析,得出地层损失率和宽度参数的分布形态、相关统计值以及与隧道相对埋深的相关性。研究结果表明: 1)地层损失率和宽度参数的数理统计结果可以很好地指导北京及类似地层条件的城市地铁隧道工程影响区划分和影响范围的确定; 2)施工方法和地层条件是影响地铁隧道周围地层变形的重要因素,工程地表变形控制应注重相关研究; 3)建议各地深入开展地铁隧道沉降槽的拟合分析研究,为隧道工程影响区划分和影响范围确定提供科学依据。  相似文献   

12.
瘦西湖超大直径盾构隧道施工对周边环境影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
戴洪伟 《隧道建设》2015,35(4):316-321
大直径曲线盾构隧道中,盾构掘进时盾构对其两侧和拱顶上方的土体作用不同,不同位置土体表现出不同的变形规律。为了保证曲线盾构隧道施工安全进行,并针对变形的差异性提出相应的解决方案,采用现场监测和FLAC 3D数值模拟相结合的方法,对超大直径曲线盾构隧道施工中周边土体变形进行分析,监测项目包括地表沉降、分层沉降、土体深层水平位移。研究结果表明:1)随着隧道掘进,地表沉降呈现反"S"形变形趋势,与3个变形阶段对应,即盾构切口到达时缓慢隆沉,盾构通过时沉降较快,盾尾脱出时沉降趋于稳定;2)横向沉降槽曲线中,掘进时隧道掘进方向曲线内侧沉降量比外侧对称位置沉降更大;3)土体水平位移在隧道掘进方向曲线内侧变形量小于外侧变形量。  相似文献   

13.
林雄  魏纲 《隧道建设》2017,37(Z2):154-160
为保护地下管线在盾构施工时的安全,研究双线盾构隧道施工时,邻近地下管线与隧道平行、相交工况下管线的安全性判别方法,将不易监测的管线状态转化为可见的地表沉降。管隧平行时,根据偏离系数建立管线与地表沉降关系式;管隧相交时,建立相应计算模型,提出管线与横轴的夹角、管线与横轴交点到纵轴的距离等参数,建立管线与地表沉降关系式。考虑管线连接方式,将管线分为连续管线与非连续管线,分别推导管线和隧道平行、相交时,连续管线的应变与地表沉降关系式和非连续管线的转角与地表沉降关系式。将预测值与实测值进行对比,研究结果表明:此方法具有可靠性;施工前可采用此方法对管线安全进行预测,避免事故发生。  相似文献   

14.
康永胜 《隧道建设》2015,35(8):766-771
郑州地铁1号线03区间盾构施工需下穿一加油站,该加油站平行布置3个尺寸相同的埋地储油罐,总容积为150 m3,属一级加油站。3个储油罐与左线盾构隧道的竖向净距为7.0 m,水平净距为2.7 m,该加油站属Ⅰ级风险源。为保证盾构施工的安全,提出针对性的盾构掘进控制措施,采用ANSYS通用有限元软件对盾构施工下穿加油站引起的沉降进行数值模拟,计算得到的地表最大累计沉降和倾斜率均未达到监测报警值;因此,加油站在盾构施工时可以正常营业。为了保证盾构的安全推进,提出2盾构的推进间距距离、土舱压力、同步注浆压力等控制措施。盾构掘进过程中的地表和建(构)筑物的监测结果表明:地表和建(构)筑物的最大累计沉降和沉降速率均未达到监测报警值,盾构已经安全穿越加油站,文章提出的盾构掘进措施和研究方法可为类似工程提供参考。  相似文献   

15.
郭幪 《隧道建设》2016,36(6):701-709
分析和探究软土地层中盾构掘进施工对地面沉降的影响因素以及对沉降进行准确预测,能够为土压(泥水)平衡盾构在不同软土地层中的掘进参数优化和沉降控制提供理论依据。以盾构慢速掘进(停机)工程实例为研究对象,采用理论解析解和三维数值模拟2种方法,计算单纯由盾构施工引起的理论地面沉降量,并与南京宁和城际一期工程新梗街站-天保路站(2号盾构井)区间施工过程中盾构停机时的实际监测数据进行比对总结,从量值差异探究盾构施工引起地面沉降的主要影响因素。分析结果表明,盾构施工工艺参数、超孔隙水压力消散和地层损失是影响盾构施工中地面沉降的主控因素。通过优化施工参数,并采取经济可靠的超前地基处理措施,能较大程度地减小盾构掘进对地面沉降的影响。  相似文献   

16.
杨延栋  陈馈  李凤远  周建军 《隧道建设》2014,34(12):1143-1147
为了预测盾构隧道施工引起的地表横向沉降,针对狮子洋隧道陆地段DIK42+660断面地层,通过理论分析,利用Peck公式对该断面地表横向沉降量进行计算;通过数值模拟,利用ANSYS建立地层的有限元模型,并从数值模拟结果中获取地表单元的横向沉降量;最后通过与现场监测结果对比,对理论分析和数值模拟的地表横向沉降量预测方法进行评价。研究结果可为盾构隧道地表沉降的预测提供有效的方法。  相似文献   

17.
王法  雷崇红  韩煊  周宏磊 《隧道建设》2013,33(12):999-1003
以北京地铁8号线二期某区间盾构工程为背景,通过对现场沉降监测结果进行分析,并将分析结果与盾构施工参数对比,研究盾构法施工中的盾构施工参数(包括掘削面稳定参数和注浆管理参数)对沉降规律的影响,总结盾构施工参数变化与沉降规律之间的关系。主要研究成果如下: 1)在盾构掘进过程中,需要从掘削面稳定和注浆质量管理2方面来实现对地面沉降风险的控制; 2)施工中实际掘土量超过设计掘土量较多的区段,地层损失率相对较大; 3)对于盾构长距离下穿古旧平房群工程,浆液总注入率在200%~350%有利于地表沉降的控制。  相似文献   

18.
为解决土压盾构在富水粉砂地层掘进过程中存在的刀盘转矩过大、开挖面稳定难以控制及排土困难等问题,提高该地层盾构施工的安全性及稳定性,以无锡地铁3号线富水粉砂地层盾构区间为依托,提出土压盾构浓泥渣土改良技术,并开展土压盾构浓泥渣土改良现场试验,研究掘进过程中开挖面前地层中孔隙水压力、盾构掘进参数及地层沉降的变化规律。结果表明: 1)向开挖面注入4 m3/环泥浆后,能够将渣土的坍落度由原来的7.5 cm提高至14.5 cm,降低盾构闭舱和喷涌风险,且能减小土压、推力及转矩的变化波动; 2)浓泥浆在开挖面形成泥膜效应,可以有效降低掘进过程引起的孔隙水压力,最大可减小20 kPa。掘进完成地层稳定后,与未添加浓泥渣土改良掘进的地层相比,地表沉降值减小26.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号