首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《公路》2017,(8)
基于天津地铁7号线盾构近距离穿越立交桥群桩基础工程,建立三维有限元模型对盾构施工穿越群桩基础过程进行动态模拟,对群桩基础的轴力、剪力、弯矩和桩侧摩阻力随盾构开挖的变化规律进行了分析。结果表明,盾构穿越桩基础过程会导致邻近桩基础在盾构深度区域产生较大的轴力、剪力与弯矩。其中,轴力的增大集中在盾构到达前、穿越时与注浆3个阶段,产生的轴力比值为1∶4∶1;剪力与弯矩的变化发生1 D(盾构直径)深度范围内,且在垂直于盾构方向造成的影响远大于盾构掘进方向;盾构开挖后,盾构中心线深度以上的桩基础承受随桩深度减小的桩侧负摩阻力,导致群桩基础的承载力减小,桩基础处于较不利的受力状态。  相似文献   

2.
采用泥水平衡盾构在软土地层中开挖隧道,确定浅埋段的合理覆土厚度是一个重要的技术难点,而河床地面坡度的变化增加了问题的难度。本文依托某过江通道工程,建立盾构隧道在软土中掘进的计算模型,采用理论分析和数值模拟的方法研究地面坡度变化对合理覆土厚度的影响规律,得到如下结论:粘土地层的最小极限支护压力由盾尾通过计算断面时的计算值控制,砂土地层的最小极限支护压力由切口通过计算断面时的计算值控制。合理覆土厚度随河床地面坡度的增加而增加,对于粘土地层,当河床地面坡度大于20°时必须采取辅助施工措施。本文的研究成果对水下盾构的合理覆土厚度的选取提供了依据。  相似文献   

3.
盾构机械的研究(3)   总被引:1,自引:0,他引:1  
8 盾构的导向与纠偏(调向)在盾构推进过程中,盾构的位置决定着在其掩护下进行的隧道衬砌的位置.所以推进盾构需要有一定精确度与执行谨慎的操作过程.盾构在推进行程中会受到一些阻力,其中包括有:由于盾构表面与地层间的摩擦而引起的阻力:由于地层施加在开挖支撑面上的压力而引起的阻力以及切口环切削欠挖地层所引起的阻力,这些阻力的大小在隧道周边上以及开挖面各处都是不相同的,所以在盾构推进时,会不可避免地要发生一定的偏斜.  相似文献   

4.
当盾构近距离穿越邻近隧道时,由于存在既有隧道的刚度约束,隧道周围土体的破坏模式会受到既有隧道影响。考虑盾构近距离穿越紧邻已有隧道的特殊施工形式,构建三维弹塑性有限元计算模型,分析盾构处于不同位置时其开挖面失稳破坏形态、开挖面支护压力与盾构掘进位移之间的关系以及隧道上方地表沉降规律;基于极限平衡法,推导盾构近距离穿越紧邻隧道时开挖面极限支护压力变化模式,并对相关参数的敏感性进行验证讨论。研究结果表明:既有隧道的存在使得破坏区域受到抑制,沿开挖方向两滑动面不对称,靠近既有隧道的滑动面张开角比另一滑动面张开角小;随着楔形体倾斜角增大,相同内摩擦角条件下的开挖面支护压力不断增大,同时由于盾构掘进产生的土拱效应和盾构开挖面上方既有隧道的刚度约束,随着内摩擦角的不断增大,开挖面支护压力呈先增大后逐渐减小的抛物线形变化;相同参数条件下,盾构在黏性土层中掘进时,由于黏性土层中产生的土拱效应较弱,所需提供开挖面稳定的支护压力略大,开挖面支护压力较盾构在砂性土层中掘进时略大,随着埋深比的增加,维持盾构开挖面稳定的极限支护压力逐渐增大,且随着内摩擦角的增大,开挖面极限支护压力相应增大。研究成果可为类似盾构隧道工程建设提供一定的理论参考。  相似文献   

5.
为解决土压盾构在富水粉砂地层掘进过程中存在的刀盘转矩过大、开挖面稳定难以控制及排土困难等问题,提高该地层盾构施工的安全性及稳定性,以无锡地铁3号线富水粉砂地层盾构区间为依托,提出土压盾构浓泥渣土改良技术,并开展土压盾构浓泥渣土改良现场试验,研究掘进过程中开挖面前地层中孔隙水压力、盾构掘进参数及地层沉降的变化规律。结果表明: 1)向开挖面注入4 m3/环泥浆后,能够将渣土的坍落度由原来的7.5 cm提高至14.5 cm,降低盾构闭舱和喷涌风险,且能减小土压、推力及转矩的变化波动; 2)浓泥浆在开挖面形成泥膜效应,可以有效降低掘进过程引起的孔隙水压力,最大可减小20 kPa。掘进完成地层稳定后,与未添加浓泥渣土改良掘进的地层相比,地表沉降值减小26.7%。  相似文献   

6.
结合南京某越江隧道工程,建立了模拟盾构隧道开挖面失稳过程的数值模型,研究了越江盾构隧道开挖面失稳过程中土体应力变化以及由土体应力重分布引发的土拱效应。研究表明: 沿埋深由下至上,土体竖向应力随开挖面位移的增大先减小后保持不变,水平应力先减小后略微增大; 土体侧压力系数沿埋深由下至上先增大后减小; 随开挖面位移增大,开挖面前方局部土体竖向应力和水平应力同时减小,形成失稳破坏区; 失稳破坏区上部土体竖向应力减小,水平应力增大,形成拱顶区; 失稳破坏区四周土体竖向应力增大,水平应力减小,形成拱脚区,土拱效应逐渐发挥。  相似文献   

7.
利用Abaqus有限元软件,对上软下硬地层的盾构开挖过程进行模拟,通过计算分析不同工况下的支护应力比和开挖面最大水平位移之间的关系,得出上软下硬地层隧道施工的安全盾构推力范围。结果表明:开挖面最大水平位移随支护应力比的减小而增大,数值模拟得出的最小支护力变化规律同实测值相一致,且盾构推力的安全参数范围为4.9~6.8。  相似文献   

8.
为探究盾构施工时地层中超孔隙水压力的变化、空间分布特征及对盾构开挖面极限支护力的影响程度,以提出泥水压力设定建议,依托大直径过江盾构隧道工程,并基于现场测试数据,对泥水盾构在富水粉细砂地层中施工引起的孔隙水压力空间分布及变化规律进行分析,运用极限平衡法求解有约束的非线性函数,计算分析超孔隙水压力对盾构隧道极限支护力的影响,并提出修正的极限支护力计算公式。研究表明:1)盾构施工时,孔隙水压力扰动区大致为开挖面前方2倍的开挖直径及开挖面两侧1.5倍开挖直径,且越靠近开挖面,扰动程度越大; 2)富水砂层中开挖面主动破坏极限支护力的设定,受盾构掘进引起的孔隙水压力变化影响较大,应适当提升泥水舱压力,或采用全泥水平衡模式保持开挖面稳定,以减小对孔隙水压力的扰动范围及扰动程度。  相似文献   

9.
采用大型有限元软件ABAQUS模拟城市地铁隧道盾构开挖诱发地表沉降规律,并针对开挖推进距离、开挖面支护以及地表建筑物刚度条件对古建筑物地表沉降影响进行了详细分析,得到以下结论:拱顶沉降、上测点周边收敛位移和下测点周边收敛位移,实测数据分别比数值模拟数据大5.41%、13.21%和10.15%,这与现场施工条件比数值模拟更为复杂有关,也说明数值模拟比较可靠。增大盾构推进距离会加大古建筑物地表最大沉降值,但是增大幅度有限,当推进距离增大为原来的3倍时,古建筑物地表最大沉降增大幅度低于10%;增大盾构开挖面支护力会明显减小古建筑物地表最大沉降值,施工过程中可以适当采取增大开挖面支护力的方法来减小古建筑物地表沉降。盾构上方地表存在古建筑物能明显减小地表最大沉降值,但地表沉降槽宽度也相应增加,因此施工过程中若盾构上方存在古建筑物,应进行特殊考虑。  相似文献   

10.
为确保始发阶段盾构近距离安全上跨既有运营隧道,在分析工程重难点的基础上,首先,对盾构上跨施工控制措施进行介绍 并结合施工参数控制情况对上跨措施的效果进行分析,然后,对既有运营隧道的变形规律进行分析。 研究结果表明: 1)通过调整 始发基座与盾构隧道轴线坡度一致,并在洞门钢环处焊接导轨,确保了盾构按照设计坡度上坡始发; 2)向盾壳四周注入克泥效,能 够润滑盾壳,减小推力,从而减轻对既有隧道的扰动; 3)盾构刀盘进入上跨段前,既有隧道产生向上和向盾构掘进方向2个方向的 位移,随着盾构重心通过既有隧道,竖向变形逐渐回弹,并在盾尾脱出后逐渐趋于稳定; 盾构掘进方向变形在刀盘位于隧道正上方 时开始迅速增加,在盾尾脱出后迅速趋于稳定。  相似文献   

11.
管会生  张瑀  杨延栋 《隧道建设》2015,35(4):377-381
为了解决盾构关键掘进参数的合理配置问题,实现盾构在不同地层条件下安全、快速、高效掘进,以新街矿区斜井隧道工程为依托,在研究斜井隧道工程地质条件的基础上,提出了双模盾构掘进参数配置的原则;分析计算双模式盾构在2种掘进模式下的最大切深、土舱压力以及盾构推力、刀盘扭矩等关键掘进参数,确定了在EPB模式和单护盾TBM模式下的最大切深分别为28r/min和19 r/min,并提出了在6个地质区间下双模盾构关键掘进参数的配置建议。  相似文献   

12.
盾构顶力是盾构始发和接收过程中的主要控制参数。以北京地铁15号线某6 m盾构直接切削玻璃纤维筋桩工程为背景,采用有限差分软件FLAC3D研究分析了盾构始发与接收时不同刀盘正面顶力作用下围护桩体受力以及地表变形规律。研究结果表明: 盾构始发中在切割玻璃纤维筋桩体时,若顶力大于10 000 kN,会引起地表隆起; 盾构接收中在切割玻璃纤维筋桩体围护结构时,由于桩的一侧为临空面,当盾构顶力大于8 000 kN时,会引起桩体发生向临空侧的倒塌破坏,存在一定的安全隐患。该研究对洞口处玻璃纤维筋桩体的设计和盾构安全施工具有较大的指导意义。  相似文献   

13.
为降低斜井掘进过程中盾构推进系统在栽头调整上存在的主观性与不确定性,从地基沉降量的角度入手,提出栽头的沉降量描述,并基于温克尔弹性地基模型,建立斜井盾构栽头的沉降量描述模型。然后结合载荷对于栽头调整的影响,进一步建立用于描述斜井盾构推进系统栽头调整能力的数学模型,并给出其上下限值的计算条件。基于栽头调整能力的数学模型,以内蒙古新街台格庙煤矿斜井工程为背景,研究隧道设计坡角变化对栽头调整能力的影响。结果表明: 1)随着下坡角度不断增大,推进系统的栽头调整能力的上下限不断下降; 2)随着下坡角度不断增大,盾构下滑力的迅速增长是造成推进系统栽头调整能力不断下降的主要原因。  相似文献   

14.
盾构近距离下穿既有地铁隧道沉降控制技术研究   总被引:2,自引:0,他引:2  
以北京地铁某区间盾构下穿既有隧道工程为背景,运用FLAC3D软件对施工过程进行模拟,结合现场实时监测数据对沉降进行分析,并通过对盾构近距离下穿既有线路的整个施工过程进行调查、研究与分析,提出盾构下穿既有隧道沉降控制的有效技术措施。结果表明: 1)设置试验段,根据试验段监测反馈对施工方案进行调整,对穿越段施工有极大的参考意义; 2)适当增大推进土压,提升推进速度,可提高沉降控制效果; 3)设置聚氨脂隔离环和注入克泥效,在沉降控制中起到了十分积极的作用。  相似文献   

15.
王春凯 《隧道建设》2016,36(11):1389-1393
盾构姿态控制的好坏与盾构隧道施工质量的优劣是密切相关的,为了研究盾构推进过程中盾构姿态控制的关键因素,并掌握其与盾构姿态调整的对应关系,为盾构推进过程中盾构姿态控制提供理论依据,通过对某工程施工过程中大量实测数据的整理,得出盾构掘进过程中姿态变化的规律;通过数学关系的推导,得到推力油缸行程差和盾构切口竖向偏差量之间的对应关系,并将工程项目中实测的推力油缸行程差与盾构切口竖向偏差量数据相对照。研究表明: 盾构推进过程中切口始终处于不断调整之中;推得油缸行程与偏差量的对应关系和实际情况非常吻合;通过推得的推力油缸行程与盾构姿态相互关系,以期为施工优化提供依据。  相似文献   

16.
宁波地铁5号线1期下穿高速公路路基时存在68°斜交长40 m的含塑料排水板的固结黏土地层,为研究盾构直接通过可行性、刀具选型、施工参数优化等问题,利用TBM掘进模态综合试验平台,进行了不同类型刀具、不同掘进参数的固结黏土地层排水板破除试验。研究表明: 对于含排水板的固结黏土地层,在合理选择刀具、盾构参数并优化掘进参数情况下,盾构法施工直接破除基本可行,试验为宁波地铁工程建设提供了依据,也可为类似工程设计及施工提供参考。  相似文献   

17.
盾构穿越花岗岩球状风化孤石群的施工关键技术   总被引:2,自引:0,他引:2  
黄恒儒 《隧道建设》2015,35(8):834-840
为解决盾构穿越孤石群地层的难题,对花岗岩风化孤石的形成机制及盾构穿越孤石群产生的地面沉降、姿态控制、设备安全的风险进行研究,并分析传统孤石处理方法在孤石群地层中运用的局限性。主要结论如下:1)盾构穿越孤石群施工应系统考虑孤石预处理、掘进和开舱换刀方案;2)采用地下隐蔽岩体爆破技术对孤石进行爆破破碎后能降低盾构掘进风险,并且盾构通过期间须严格控制掘进参数;3)采用压密注浆改良刀盘周边地层,盾尾止水和舱内制作泥膜措施辅助带压进舱,能提高开舱成功率,解决刀具更换的问题。  相似文献   

18.
刘金祥  蔡辉 《隧道建设》2015,35(Z2):171-175
以西安地铁3号线TJSG-4标砂性土层条件下所选用的盾构施工案例为依托,通过总结在掘进施工过程中所出现的掘进困难问题和所采取的处理措施,分析指出产生掘进困难的各种原因。当砂性土层的标贯击数大于45击时,这就是影响盾构选型和刀盘刀具设计的主要因素,对刀盘刀具的耐磨性要求比一般砂性土层更高。  相似文献   

19.
杨志刚 《隧道建设》2012,32(4):557-560
以深圳地铁5号线宝翻盾构区间为例,介绍盾构机顺利通过孤石和基岩区的预处理对策。根据设计地质资料,从盾构施工前加密地质补勘入手,摸清对盾构机掘进存在风险的孤石、上浮基岩等详细参数,然后根据盾构的性能及以往类似地质的经验教训,在本区间依次采取调线调坡绕过、加固处理后通过、控制盾构机参数直接通过等方法,盾构掘进过程中没有发生一起非计划停机,有效保证了工期,在5号线全线施工中起到了示范作用。  相似文献   

20.
为研究城市下穿隧道纵坡段驾驶人生理和行为特征变化规律,选取22名驾驶人在早晨5:00至7:00非高峰时段,交通状况几乎无差别的环境下,开展城市下穿隧道纵坡段实车试验。利用MP150生理测试仪和ECU车速采集设备采集驾驶人的心率值和车速值,应用单因素方差分析对数据进行差异性显著检验;并分析城市下穿隧道纵坡坡度和速度对驾驶人心率增长率的影响规律,构建城市下穿隧道上下坡段坡度、速度和驾驶人心率增长率关系度量模型,量化了坡度、速度与驾驶人心率增长率之间的关系。然后采用单因素敏感性分析方法对模型中的2个自变量(坡度和速度)进行敏感性分析。结果表明:在城市下穿隧道上、下坡段行驶时,不同坡度范围下的车速和心率增长率有一定的差异性,车速和心率增长率均随坡度增大呈现先增加后减少的趋势;城市下穿隧道上、下坡段,车辆速度均是在3.5%~4.0%坡度范围下的达到最大,在城市下穿隧道上坡段行驶时,3.5%~4.0%坡度范围下的驾驶人心率增长率达到最大,而在下坡段行驶时,4.0%~4.5%坡度范围下的驾驶人心率增长率达到最大;驾驶人在城市下穿隧道下坡段行驶时,心率增长率均值均高于上坡段,驾驶人在城市下穿隧道下坡段行驶时比上坡段更紧张;驾驶人心率增长率对坡度敏感程度要高于其对速度的敏感程度,坡度的变动比速度更易引起驾驶人心率增长率的变动,驾驶人的心理紧张程度受坡度的影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号