首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
盾构隧道管片在制作、养护、运输及拼装过程中,常会出现裂缝,裂缝的存在在一定程度上会影响管片衬砌结构的整体受力。以中国某地铁越江盾构隧道为工程背景,采用相似模型试验的方法,基于盾构隧道管片的位移、内力及声发射数据,系统分析裂缝数量对管片衬砌结构力学特性的影响规律,并通过管片破坏过程示意图分析管片结构的破坏模式。研究结果表明:管片衬砌结构承载阶段可划分为弹性承载、塑性承载和破坏失稳3个阶段;裂缝的存在降低了管片衬砌结构的整体刚度,随裂缝数量增加,管片衬砌结构的弹性承载范围增加,塑性承载阶段范围减小,损伤破坏的空间影响范围呈增大趋势,结构的失稳破坏趋于突发性破坏,相同荷载下的变形增大,结构的极限承载力降低;裂缝的存在使得管片在预制裂缝位置产生纵向贯通裂缝,随裂缝数量增加,纵向贯通裂缝数量增加,破坏区域由某一位置发展为条带状分布,当拱腰预制裂缝数量达到3条时,裂缝之间管片的相互挤压导致网状裂缝产生,结构局部出现压溃区。  相似文献   

2.
为了解联络通道施工期间管片衬砌结构易裂损破坏的形成原因,基于3环错缝拼装数值模型,就管片破拆对盾构隧道衬砌整环承载性能的影响进行研究。研究结果表明:1)联络通道开孔将导致盾构隧道衬砌整环极限承载能力和整环屈服承载力分别下降23.7%、25%,整环竖向和水平方向承载割线刚度分别下降21%、33%;2)管片开孔两侧的管片接头和开孔环拱顶等位置,管片接头以及开孔环上方管片中部和未开孔一侧拱腰处管片等是关键截面,最易开裂和破坏;3)管片开孔后,在同样大小外荷载作用下,关键截面位置管片的弯矩被大幅放大。  相似文献   

3.
在役盾构隧道管片衬砌的承载能力劣化模型是隧道结构耐久性评价及科学养护的基础.以建立能考虑工程不确定性的钢筋混凝土管片概率承载能力劣化模型为目标,考虑隧道运营环境的主要侵蚀因子及管片衬砌的压弯受力特性,建立碳化侵蚀与氯离子侵蚀下管片主筋的锈蚀模型;考虑锈蚀管片中钢筋的截面面积损失以及钢筋[混凝土黏结滑移,以钢筋锈蚀率为媒...  相似文献   

4.
《公路》2017,(9)
腐蚀环境下盾构隧道管片钢筋锈蚀严重影响隧道结构的长期安全使用性及耐久性。针对这一现状,采用数值模拟的方式,通过考虑时间效应,探究在不同环境条件下盾构隧道100年服役期内管片钢筋锈蚀规律,得到的结论主要有:随着隧道服役时间的延长,钢筋表面累积的离子浓度不断变大,但不同位置处累积的最大离子浓度不同,越靠近接缝面位置处离子浓度越大;管片外侧水压越大,钢筋同一位置处累积的离子浓度越大,出现锈蚀的时间越短;改变管片外侧表面氯离子浓度同样会影响钢筋位置处离子浓度,其值越大,钢筋同一位置处累积的最大离子浓度越高,出现锈蚀的时间越短;提高腐蚀环境中盾构隧道管片衬砌保护层厚度,是延缓钢筋位置达到锈蚀临界浓度时间以及保障隧道结构安全承载的有效手段。  相似文献   

5.
盾构隧道衬砌由预制钢筋混凝土管片通过螺栓连接拼装而成,存在很多薄弱接头,这使其在火灾高温条件下会呈现出更加复杂的力学响应。因此,为了获取盾构隧道管片及接头高温下力学性能,对7组足尺管片试件进行了火灾试验,研究了火灾类型(ISO834、HC及RABT标准升温曲线)、管片类型(标准块、标准块接头及封顶块接头)和密封设置对盾构隧道管片在火灾高温下力学性能的影响。试验结果表明:①在较快的升温速率和较高的温度下,管片受火面混凝土发生严重剥落,导致大量钢筋外露,影响盾构管片高温下承载力,威胁盾构隧道衬砌结构安全;②当各试验距受火面25 mm处混凝土温度均超过《建筑设计防火规范》规定的耐火极限判断标准时,试验管片变形较小且未出现破坏现象,可知仅将温度作为隧道内承重结构体耐火极限判定依据较片面和保守;③管片接头处手孔密封设置及接缝密封设置分别对连接螺栓螺母和螺杆起到了很好的保护作用,但对止水条的温度变化趋势和特征影响不大;④混凝土严重剥落导致的管片厚度减少、大量裂缝产生造成的管片完整性下降以及混凝土水分受热蒸发留下的与外界贯通的毛细孔道均严重降低管片的抗渗性能。  相似文献   

6.
局部失效(混凝土或钢筋缺失)会显著影响盾构管片的承载性能,甚至会诱发隧道整体结构的破坏。为明确局部失效对管片承载特性的影响,分别开展了标准管片和跨中及侧部开孔管片承载特性的足尺试验,并对管片的位移、裂缝扩展及混凝土应变进行了监测。试验结果表明:管片破坏过程分为4个典型阶段,并将各个阶段的临界荷载定义为管片的3个特征荷载。根据各特征荷载值对管片的承载特性进行了对比分析,明确了开孔管片的承载能力低于标准管片,且开孔位置对管片的承载特性具有较强影响。为进一步明确局部失效盾构管片试验结果的准确性,采用混凝土弹塑性损伤本构建立了与试验对应的三维精细化数值模型,并通过与模拟的对比验证了试验结果的合理性。随后,依据标准管片各承载特性,定量分析了管片开孔直径及开孔位置等因素对管片抗弯承载特性的影响规律,并初步提出了局部失效盾构管片抗弯承载特性的理论计算模型。研究结果可为极端条件下地铁盾构隧道的安全性评估及加固设计提供理论基础。  相似文献   

7.
针对钢纤维混凝土管片在盾构隧道工程中应用日益频繁的现状,以盾构隧道钢纤维混凝土管片接头为试验对象,采用足尺试验方法对钢纤维混凝土管片接头和传统钢筋混凝土管片接头的极限承载能力进行研究,归纳宏观破坏现象,获得了荷载-挠度曲线和弯矩-转角曲线等整体力学响应特性,得到了荷载-螺栓应变关系和荷载-混凝土表面应变等局部力学响应特性,分析了受压区剪裂缝的扩展规律,探讨了接头的延性指标,并对接头进行了基于性能的极限承载能力评价。研究结果表明:钢纤维混凝土管片接头的开裂荷载比钢筋混凝土管片接头提高12.9%;钢纤维混凝土管片接头的极限荷载与钢筋混凝土管片接头基本一致(略微增加4.4%);钢纤维混凝土管片接头具有优良的抗裂能力,受压区剪裂缝数量为1个,少于钢筋混凝土管片接头的3个,承载能力极限状态时的最大裂缝宽度从3.82mm减少到1.35mm,正常使用状态时的最大允许裂缝宽度(0.2mm)对应的荷载抗力提高了43.75%;钢纤维混凝土管片接头的受力性能优于钢筋混凝土管片接头;研究成果可为钢纤维混凝土管片在盾构隧道工程中的应用提供理论支撑和技术参考。  相似文献   

8.
为提高既有隧道结构承载力及刚度,对盾构隧道衬砌管片进行波纹钢板加固,并采用足尺试验方法,对2块加固管片与1块未加固管片进行2点抗弯加载,分析加固管片的受力过程、破坏模式以及加固机制,并对其加固效果进行总体评价。试验结果表明: 1)波纹钢板加固是一种有效的加固方法,可以有效提高管片极限抗弯承载力及刚度; 2)加固后管片破坏模式为斜截面受剪破坏; 3)加固钢板与管片界面间存在较大剪切应力与径向剥离应力,应设置有效的抗剪及抗剥离构造措施。  相似文献   

9.
为了研究超高性能混凝土(UHPC)加固盾构隧道衬砌结构性能,首先开展了UHPC材料抗压、抗拉试验研究,然后将其应用于加固盾构隧道衬砌结构,并开展了加固结构的极限承载力足尺试验研究。该加固方法包括以下步骤:在隧道管片内表面进行凿毛处理,在凿毛后的内弧面植入弯筋和化学锚栓,清理凿毛表面,最后在内弧面浇筑0.06 m厚UHPC。未加固衬砌结构整环外径6.2 m,环宽0.6 m,管片厚度0.35 m。加固结构通过外弧面上均匀分布的24个千斤顶进行加载,这些千斤顶分为3组,分别控制其荷载大小,以模拟地层的不均匀压力。标准养护条件下,UHPC18 d龄期(足尺试验龄期)的抗压和抗拉弹性极限强度分别达到138 MPa和12 MPa。加固整环结构的弹性极限由腰部外弧面的混凝土开裂控制,结构破坏是由于原管片接头位置出现4个塑性铰,致使结构变成可变机构。通过分析试验结果以及对比现有加固技术,得到如下主要结论:①UHPC材料的拉压力学性能对养护湿度的依赖性较小,材料存在明显的应变强化现象;②UHPC加固隧道衬砌结构极限承载力由管片接头部位性能控制;③UHPC自身的材料性能得到充分利用,但原隧道管片的材料性能尚未得到充分发挥;④相比未加固结构,初始结构刚度提高1个数量级,结构弹性极限提高了115%,UHPC加固结构承载力和传统的钢板加固相当。  相似文献   

10.
为了研究大断面矩形盾构隧道管片接头结构的力学性能及其极限承载能力和极限破坏状态,进行了该管片接头的极限抗弯承载力试验。试验在同济大学自主研发的盾构隧道管片接头试验加载系统中进行,采用Datataker数据采集系统记录了接头试件在荷载作用下的力学性能变化过程,同时采集并记录了该接头的破坏过程和最终破坏形态。通过分析管片接缝张角、接头处挠度以及双排螺栓应力随接头处弯矩荷载的变化,对该管片接头结构力学性能变化及破坏全过程进行研究,并将其分为3个阶段:弹性变化阶段(弯矩小于450kN·m)、塑性发展阶段(弯矩为450~800kN·m)、屈服破坏阶段(弯矩大于800kN·m)。试验结果表明:正弯矩荷载下该断面形式的大断面矩形盾构隧道管片接头屈服弯矩为800kN·m,极限抗弯承载力为884kN·m,均远大于该管片接头设计荷载(534kN·m),意味着试验的大断面矩形盾构隧道管片接头可满足抗弯设计的要求,并为类似工程提供参考。管片接头试件的最终破坏形态表明,除了传统圆形盾构隧道管片接头试验中常见的接缝混凝土受压屈服破坏、接头螺栓受拉屈服破坏以外,所研究的大断面矩形盾构隧道纵缝接头出现了新的破坏形态,即接头盒断裂和锚固失效。  相似文献   

11.
为了选择适用于软土地区深埋排水盾构隧道管片接头结构形式,针对新型高承载力盾构隧道管片接头预埋件结构,开展了1∶1结构抗拉性能试验,研究管片接头预埋件在不同荷载工况下,锚筋的应力分布和传递、接头板的变形和位移、螺栓的应力分布、管片混凝土裂缝的分布扩展情况和结构最终破坏模式等力学特征。研究结果表明:锚筋应力随着与预埋件连接处距离的增加逐步减小,且传递曲线均呈现出先陡后缓的趋势;接头预埋件锚板和锚筋的存在,使得接头的整体刚度得到了增强,同时提高了结构的承载能力;结构最终破坏模式是接头预埋件与锚筋的连接位置发生断裂破坏,且结构破坏时预埋件整体有较大的翘曲变形,因此可以考虑提高预埋件与锚筋的连接性能并相应增加预埋件的刚度以进一步改善结构的整体性能。  相似文献   

12.
为研究类矩形盾构隧道结构在意外堆载工况下的整体安全性,针对2环纵向接缝构造相同,管片配筋不同的衬砌结构进行整环足尺加载试验。试验通过30点集中荷载模拟类矩形盾构衬砌结构在意外堆载工况下的实际受力,利用位移计和电阻应变片等传感器得到类矩形盾构隧道结构在意外堆载工况下的破坏过程、结构变形、接缝变形及螺栓应变等试验结果,对其进行分析得到了类矩形盾构隧道结构在意外堆载工况下的破坏机理;并对比分析了2环试验结构试验结果,探究了不同管片配筋量对结构受力性能的影响。最后,从结构鲁棒性角度出发,分析了意外堆载工况下类矩形盾构隧道结构的鲁棒性指标,对类矩形盾构隧道结构整体安全性进行评价,并通过对比分析2环试验结构的鲁棒性指标,为提高类矩形盾构隧道结构整体安全性提出管片优化设计的建议。研究结果表明:类矩形盾构隧道衬砌结构的薄弱环节为管片间的纵向接缝及T块与中柱连接处;纵向接缝构造形式相同前提下,管片配筋量增加对纵向接缝受力影响不明显,不能使类矩形盾构隧道结构的鲁棒性明显提升;管片截面抗剪不足导致结构局部破坏而失去承载力不利于结构的鲁棒性,可通过优化管片本体截面的抗剪承载力提高类矩形盾构隧道结构的整体安全性。  相似文献   

13.
为了探明围压对盾构隧道错缝拼装管片衬砌结构力学性能的影响,以苏通GIL电力管廊隧道为工程背景,采用"多功能盾构隧道结构体试验系统"对3种不同围压下的错缝拼装的管片衬砌结构进行了原型加载试验,从管片衬砌结构的内力、变形、纵缝张开、螺栓应变和主筋应变等方面研究了围压对管片衬砌结构的影响。研究结果表明:①围压变化对管片衬砌结构弯矩的大小和分布影响较小,而对轴力大小和分布影响较大,围压增大,管片衬砌结构的轴力分布更为均匀;②管片衬砌结构的形变呈现不规则的"椭圆形",围压增大可显著降低管片衬砌结构的整体形变,提高管片衬砌结构的稳定性;③围压增大有利于控制管片纵缝张开量,减小螺栓的应变;④围压的增大能够降低管片内侧主筋拉应变,但管片外侧主筋的压应力会随围压的增大而增大,使得正常使用阶段管片外侧主筋应力由压应力控制;⑤围压增大能够有效延长管片衬砌结构单点位移、纵缝张开、螺栓应变线性变化过程,延缓了管片衬砌结构进入塑性变形的时间;⑥高围压条件下管片结构处于高轴压受力状态,使得管片结构外侧受压钢筋应力增大,易造成钢筋屈服先于混凝土压溃发生,使管片结构抗压强度降低。在进行工程设计时,建议对高围压下管片结构的外侧受压钢筋进行加强设计。  相似文献   

14.
《公路》2019,(10)
在浅埋、偏压等不利地质条件下隧道衬砌结构易发生开裂、渗漏水等病害,衬砌开裂及渗漏水的存在降低了结构的耐久性和承载力,影响结构的安全使用性能。为分析浅埋偏压条件下隧道衬砌结构受力变形特征及稳定性情况,基于扩展有限元原理,采用ABAQUS软件对不同的上覆岩层厚度条件下隧道衬砌结构空间受力特征、裂缝扩展情况及混凝土单元损伤失效程度等进行了模拟分析。研究结果表明,在浅埋偏压条件下,当上覆岩层厚度未超过7m时,隧道衬砌结构均出现不同程度的开裂现象,裂缝位置均大致位于A洞右拱脚位置。当上覆岩层厚度分别为3.5m、4m和5m时,隧道初期支护出现了贯通的纵向裂缝,当上覆岩层厚度为7m时,隧道初支沿走向出现了多条轻微不连续的纵向裂缝。随着上覆岩层厚度的增大,隧道衬砌结构损伤程度呈降低趋势,偏压的影响逐渐减小。  相似文献   

15.
复杂运营环境下自然与人为因素所引发的众多隧道火灾已造成了重大的社会影响和经济损失。火灾已成为威胁隧道安全运营的主要灾害之一,其对隧道衬砌结构会产生严重的损伤乃至破坏。盾构衬砌为装配式结构,接缝多以螺栓连接,火灾高温下易发生管片爆裂和接缝连接薄弱部位受损而诱发的突然破坏;同时,由于盾构隧道周围地层的约束作用有限,其衬砌结构体系受火损坏后垮塌的风险极高。为提高软土地层环境下盾构隧道装配式衬砌结构体系的耐火能力及火灾安全性,本文调研了盾构隧道火灾安全研究现状,对与盾构隧道火灾安全研究相关的试验及理论分析工作做了较为全面的综述,主要包括:火灾高温下盾构隧道衬砌管片力学特性试验与理论分析模型,火灾高温下管片接缝力学特性试验与理论分析模型,火灾高温下盾构衬砌体系力学特性试验与理论分析模型,火灾高温下盾构隧道周围地层力学行为研究。在此基础上,针对大直径盾构隧道的火灾试验,高温引起的盾构衬砌管片材料性能劣化评价及主动式抗火管片的材料设计,火灾高温条件下盾构衬砌结构计算模型精细化这3个核心问题,展望了盾构衬砌受火灾影响的研究方向和思路。  相似文献   

16.
为定量分析重载列车动载作用下隧道裂损衬砌裂缝的演化机制和承载性能的变化规律,采用扩展有限元与直接循环法相结合的方法模拟裂缝在列车荷载作用下的扩展路径,并通过模型试验对方法的有效性和准确性进行验证。模型试验与数值模拟的误差仅为3.7%,表明该数值模拟方法较为精确。研究发现: 1)在重载列车动载作用下,裂损衬砌仰拱处的动力响应相较于衬砌其他位置会更为剧烈,裂损衬砌仰拱处的安全系数与衬砌其他位置相比则更小,因此裂损衬砌仰拱位置为重载列车动载下的危险部位; 2)重载列车轴重对裂损隧道衬砌的动力响应影响比初始裂缝深度及车速对裂损隧道衬砌的动力响应影响更为明显,而裂损衬砌的安全性能受初始裂缝深度影响比受轴重及车速影响更为显著。  相似文献   

17.
为揭示外水压与周围腐蚀离子环境长期耦合作用下盾构隧道衬砌结构侵蚀劣化机理,对压力渗透下管片混凝土多孔介质渗透深度与离子侵蚀运移进行理论解析,建立管片接头离子侵蚀对流-弥散运移数值模型,在一维渗流状态下验证了考虑压力渗透作用的腐蚀离子侵蚀理论的合理性,并建立可考虑压力渗透、离子对流-弥散运移以及管片接头非连续的盾构隧道衬砌结构离子侵蚀数值模型,重点分析了整环管片衬砌结构侵蚀劣化规律。结果表明:水压力的存在对海水渗透具有促进作用,外水压力越大,对海水渗透效果越显著;外水压力的增大将导致氯离子含量的增加,外水压力越大,同一位置累积到相同离子浓度所需的累积时间越短;管片接头处离子含量分布具有局部集中的特点,整环管片衬砌结构离子侵蚀大小关系为拱顶拱腰拱底;服役初期仅管片接头附近外排钢筋出现锈蚀,而后出现外排钢筋整体性锈蚀,体现出不均匀锈蚀的特点,且随着服役时间的延长,外排钢筋不均匀锈蚀差异减小。  相似文献   

18.
为了研究盾构隧道混凝土管片中轴力对接头极限弯矩的影响,将螺栓连接的混凝土管片接头简化成梁模型,建立混凝土管片接头极限承载力的计算模型。基于弯矩作用下管片接头截面平面变形假定,推导管片接头截面力平衡和弯矩平衡表达式,建立受拉区螺栓应力与受压区高度和混凝土极限应变之间的关系。以北京地铁隧道和上海地铁隧道管片为例,分析轴力对混凝土管片接头极限承载力的影响,并研究管片接头的破坏方式。研究表明,地铁隧道管片接头的极限承载力随着轴力的增加而增加,将解析模型计算结果与有限元模型结果进行对比,验证了所提出计算模型的准确性。  相似文献   

19.
叶宇航  王建  徐文田  刘鑫  柳献 《隧道建设》2018,38(Z2):151-160
为得到能真实反应软土地基大直径盾构隧道结构受力特点又能保证衬砌结构安全的设计模型,结合广州轨道交通4号线南延段大直径地铁盾构隧道结构现场实测结果,采用ANSYS软件研究适用于软土地基大直径盾构隧道衬砌结构设计的计算模型。基于反分析得到的设计模型,对水平侧压力系数、地基弹簧刚度、管片厚度、管片接头位置、管片分块数量等影响大直径盾构隧道衬砌结构受力特性的因素进行敏感性分析。结果表明: 1)采用地基弹簧模拟底部反力并通过调整弹簧的范围可得到既能真实反映衬砌结构受力特性又能保证结构安全性的计算模型; 2)衬砌结构受力对侧压力系数和管片厚度敏感,对地基刚度不敏感; 3)接头位置变化和管片分块数量主要影响布置地基弹簧范围内的管片受力。  相似文献   

20.
为研究火灾高温下盾构隧道衬砌结构的热力耦合行为,利用自主研制的温度加载设备和衬砌管环外压加载设备,分别设计并开展整环衬砌结构的无外压受热模型试验和热力耦合模型试验。试验使用不考虑接头效应的钢纤维混凝土匀质管片。首先,介绍2种试验设备的原理、主要构造和各类参数;在此基础上,针对模型试验过程进行细致的说明。然后,通过对衬砌管片结构形式的分析确定试验的火灾加载工况;详尽描述不同试验的相关结果,重点分析衬砌结构内表面各处温度场的变化过程、分布情况、管片的变形结果及破坏模式。研究结果表明:温度加载设备和衬砌管环外压加载设备能够较好的满足整环衬砌热力耦合研究的模型试验要求;试验初期底部管片的升温速率相对顶部管片有所滞后,但各部分间的温差数值随加热的持续进行会逐渐减小,衬砌结构内部能够形成稳定的温度场;无外力作用下匀质管片的破坏形式表现为沿幅宽方向的贯穿裂缝,各管片结构的裂缝发展路径存在差异;衬砌管片由于外压作用产生的压应变随温度的升高而减小;外压荷载对衬砌结构在高温下产生的膨胀变形存在抑制效果。研究结果可为盾构隧道整环衬砌结构热力耦合研究的进一步发展提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号