首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
某地铁高架桥为65 m+120 m+65 m预应力混凝土变截面连续梁桥,建成后运营不久发现主梁产生较大的竖向下挠,并且主梁跨中底板出现较多延伸至腹板的横向裂缝。为了解主梁下挠和裂缝产生的原因以及目前桥梁的技术状况,对该桥梁进行了专项检测,并采用有限元软件进行结构验算。检测及验算结果表明:该桥梁体下挠和开裂的主要原因主要是梁体跨中预应力的损失,特别是底板束预应力损失过大或张拉不足而导致的梁体抗弯承载力不足。根据检测评估结果主要采用了体外预应力钢束进行维修补强。维修处治后的荷载试验表明,桥梁强度、刚度及动力性能均满足规范要求,桥梁加固处治效果良好。  相似文献   

2.
《公路》2020,(4)
宁夏某黄河大桥主桥(65+2×120+65)m为大跨度PC连续刚构桥,对该桥主跨跨中下挠及梁体开裂等常见病害的成因进行深入分析,对主桥箱梁采用增加腹板厚度+体内预应力来提高结构刚度和截面跨中混凝土压应力储备,对顶底板纵向裂缝采用预张紧钢丝绳网片+聚合物砂浆、粘贴碳纤维布等方法处治,加固效果明显,对该类桥同类病害处治有较大借鉴意义。  相似文献   

3.
广州大桥主桥静载试验与分析   总被引:2,自引:1,他引:1  
广州大桥是广州市区东部联系珠江南北两岸交通的主要桥梁之一,全长979m,1985年11月竣工。主桥为80m+110m+80m三跨预应力混凝土变截面连续梁桥。目前日交通量超过15万辆。为确保桥梁安全正常地使用,进行了静动载试验和模态测试。简要介绍主桥静载试验情况,通过实测与理论计算对比表明,该桥整体性能基本满足设计要求。  相似文献   

4.
<正>九年桥位于日本岩手县北上市下鬼柳四地,横跨和贺川,是一座混凝土桥梁,建于1927年2月。该桥已经使用了近80年,其上交通量仍较大。为更好地服务于市民,对该桥进行维修加固,并在其一侧新建一座人行桥。人行桥桥长331.0m,跨径布置为(51.5+51.6+51.6+44.8+44.8+44.8+44.8+40.7)m。为快速、近距离施工,人行桥基础采用预  相似文献   

5.
某大跨径跨海大桥主桥为(124.4+170+124.4)m预应力混凝土连续刚构桥,为对该桥进行裂缝处理、混凝土表面缺陷修复及防护涂装,需在梁底下部搭建维修平台。结合该桥结构特点和桥下通航净空要求,维修平台采用倒梯形吊挂式钢管脚手架结构,由Φ48mm×3.5mm钢管拼装成顺桥向每2m一道的横向支撑架,再由纵向钢管连接形成全封闭的梁底施工平台。采用有限元软件建立跨中及墩顶典型部位8m长倒梯形吊挂式钢管脚手架平台结构局部模型,经计算平台结构强度、刚度及稳定性均满足要求。实践证明该平台施工过程安全可靠。  相似文献   

6.
运宝黄河大桥主桥为(110+2X 200+110) m波形钢腹板低塔斜拉桥,副桥为(48+9X 90+48) m波形钢腹板刚构一连续组合体系桥。主桥主梁为整体式单箱五室截面,腹板采用波形钢腹板—混凝土腹板混合形式(中间2道为混凝土腹板,其余4道为波形钢腹板),中间箱室采用混凝土横隔板,两侧箱室采用钢横隔板;副桥主梁为分幅式单箱单室截面,腹板采用波形钢腹板;波形钢腹板与混凝土顶板采用双开孔板连接件连接,主桥中腹板与混凝土底板采用焊接角钢的翼缘型结合部,主副桥边腹板与混凝土底板采用外包型结合部,可提高结合部耐久性;波形钢腹板采用耐候钢,无需进行防腐涂装,节省后期维修养护成本。主桥采用挂篮悬臂浇筑施工,副桥采用钢腹板自承重架设工法,提高了施工效率和安全性。  相似文献   

7.
沈阳市新立堡桥主桥采用47+80+116+80+47=370(m)的预应力混凝土连续箱梁桥,引桥采用跨径35 m的预应力混凝土连续箱梁桥。现介绍该桥的总体设计。  相似文献   

8.
珠海洪鹤大桥辅航道桥采用85m+2×160m+85m四跨预应力混凝土连续刚构,主梁为单箱单室变截面混凝土箱梁,主桥桥墩采用双肢变截面矩形实心薄壁墩。由于该桥位于高地震区,依据抗震设计原则初步拟定桥梁结构尺寸,并采用有限单元法对大桥进行静力计算和抗震计算。结果表明,该桥的各项指标均满足规范要求。  相似文献   

9.
武东特大桥施工监控   总被引:2,自引:1,他引:1  
武东特大桥主桥为(63+115+63)m变截面预应力混凝土刚构一连续组合梁桥,位于R=1 000 m的平面圆曲线上.采用有限元软件计算结构线形和内力,比较该桥型与连续梁桥、连续刚构桥的受力特点,分析曲率对该桥的影响程度;在施工阶段对结构线形和应力进行测试,并将实测结果与计算结果进行对比.结果表明:该桥受力与连续梁桥和连...  相似文献   

10.
设计计算针对主跨为50 m的满堂支架现浇变截面预应力混凝土箱梁桥,跨径布置为:30 m+50 m+30 m(上行线路中心线)。介绍了该桥的纵向、横向、桥面板及径向力设计等,有关经验可供相关专业人员参考。  相似文献   

11.
马立芬  王冰 《桥梁建设》2012,42(1):84-89
昌平跨线桥采用两联跨度为(37+60+79+42.5)m及(42.5+79+42.5)m的钢-混凝土结合连续刚构型式.该桥主梁为钢-混凝土结合梁,钢箱梁采用单箱单室直腹板截面,桥面板为钢筋混凝土结构,钢箱梁在中墩处与混凝土墩身固结,下部结构墩柱均采用矩形桥墩.采用有限元程序MIDAS Civil建立全桥空间结构计算模型,对该桥进行静力计算分析,结果表明钢箱应力及结构强度均满足规范要求.为减少对桥下交通的影响,该桥钢箱梁采用工厂预制、现场吊装的方法施工,预制桥面板按先跨中后支点的顺序施工,采用间断法安装.  相似文献   

12.
南门江大桥为下承式三跨连续梁拱组合体系桥梁,桥梁布跨为26.5 m+77 m+26.5 m=130 m,主跨为钢管混凝土提篮拱,横向设4片拱肋,拱肋采用哑铃形截面,桥道系采用梁格体系,由纵梁、横梁、桥道板组成,采取先梁后拱满堂支架的施工方案.主要介绍了该桥上部结构设计、钢管防腐方案、上部结构静力分析、拱桥稳定计算等相关内容.  相似文献   

13.
为了探讨行波效应对刚构-连续组合梁桥结构不同部位响应极值的影响规律,以某48 m+5×80 m+48 m刚构-连续组合梁桥为背景,建立刚性地基和弹性地基2种计算模型,采用大质量法(LMM)求解了一系列相位差条件下结构的非线性地震响应.分析结果表明:对于主跨大于或等于80 m的刚构-连续组合梁桥,在抗震设计中必须考虑行波效应的影响,且应重点关注刚构墩的地震响应;在进行行波效应分析时必须根据基岩类型选择恰当的相位差输入,以此来获得结构真实的地震响应;在纵向行波作用下,结构的内力响应峰值和位移响应峰值均随相位差呈周期性变化,其变化周期与结构的特征周期相一致.  相似文献   

14.
该文结合某铁路特大桥40.7 m+60 m+40.7 m预应力混凝土连续箱梁施工过程控制实践,详细介绍了施工阶段各截面预拱度的设置、立模标高的计算以及控制截面的应变测试,确保了该桥的顺利合龙及施工安全,可为类似桥梁的施工过程监控提供参考。  相似文献   

15.
针对低重心斜拉桥边跨墩柱的横向抗震问题,以某在建低重心斜拉桥为背景,进行边跨墩柱横向抗震措施研究。该桥主桥为(45+80+285+80+45)m双塔双索面混凝土斜拉桥,边跨墩柱高度仅为11 m。采用SAP2000建立全桥有限元模型,输入地震动,通过抗弯能力需求比R M评估桥梁的抗震性能,提出改变墩柱截面形式与采用防屈曲支撑构件(BRB)等8种抗震措施,并对比分析各措施墩柱关键截面的R M。结果表明:在地震作用下,设置横向固定支座的边跨墩柱墩底截面弯矩较大、R M均小于1,是低重心斜拉桥横向抗震的薄弱环节;8种抗震措施墩柱关键截面的R M均大于1,各措施均可改善边跨墩柱的横向抗震性能,措施Ⅱ-6(将边跨墩柱改为双肢截面,并在双肢间设置BRB)为该桥最优措施。  相似文献   

16.
西宁市文汇路跨湟水河大桥为(24+65+158+65+24)m双塔五跨连续混凝土梁自锚式悬索桥,综述该桥设计与计算。该桥采用纵向半漂浮体系,设置纵向阻尼器控制梁端位移;主梁采用单箱三室混凝土截面,梁高2.2 m;桥塔采用门形框架混凝土结构,塔顶横梁采用矩形空心截面并设置预应力钢绞线;桥塔墩下部采用分离式承台,单个承台布置6根直径2.2 m钻孔灌注桩;主缆采用φ5.25 mm镀锌高强平行钢丝,吊索采用φ7.0 mm镀锌高强平行钢丝。计算分析结果表明该桥的各项检算均满足规范要求。  相似文献   

17.
忻州市傅山路跨云中河景观桥为4片拱肋组成的五跨下承式复式钢箱系杆拱梁组合桥,跨径组合为(30+30+90+30+30)m,桥面标准宽度为43.5m。主梁选用大悬臂变截面预应力混凝土连续箱梁、单箱四室直腹板截面形式,箱梁顶面设置了通长横向加劲隔板;拱肋由主拱、副拱4片组成,主拱拱面内矢高35m,副拱拱面内矢高12m,均采用钢结构;吊索设计中考虑了吊索疲劳、吊装以及可更换性(更换拉索时无需中断交通)。设计过程中采用有限元软件对该桥进行计算分析,并开展了地震动及抗震性能、稳定性能的专题研究。  相似文献   

18.
介绍了福建省道官九线漳州郭坑大桥的设计情况.该桥是连接九龙江(北溪)两岸的交通枢纽,是省道官九线上的重要工程,全长495 m,主桥为(46+2×78+46) m预应力变截面连续箱梁,采用悬臂挂篮施工;引桥为6×40 m预应力混凝土等截面连续箱梁,采用逐孔支架上现浇施工.  相似文献   

19.
菏泽市丹阳路大桥为(40+100+240+100+40)m双塔中央单索面半飘浮体系混凝土斜拉桥。该桥塔、墩固结,主梁与塔、墩间设置横、竖向支座和纵向液压阻尼器;主梁采用单箱三室斜腹板截面,高3.6m。桥塔采用顺桥向人字形的独柱混凝土塔,高68.2m,单箱单室矩形空心截面。人字形塔柱穿过主梁,与墩身顺接,墩身采用十字形空心薄壁截面,矩形承台,布置33根ф2.0m钻孔灌注桩。辅助墩和交接墩均采用花瓶形双柱式框架墩,矩形承台,布置8根ф1.5m钻孔灌注桩。斜拉索采用ф7mm镀锌高强平行钢丝束。采用MIDAS Civil 2006和SCDS平面程序对该桥进行计算分析,结果表明该桥各项检算均满足规范要求。  相似文献   

20.
进行桥面板现浇层结构计算时,一般不考虑其对主梁刚度的贡献,但实际上现浇层刚度对连续梁桥静动力性能存在影响。为研究影响效果,该文以某连续梁桥(48+80+48)m为例,采用Midas/Civil建立模型,对比分析了是否考虑桥面板现浇层刚度情况下连续梁桥的弯矩、挠度、频率;对比分析了两种桥面板现浇层刚度模拟方式——截面输入和板单元模拟同一桥面板现浇层刚度占比下连续梁桥的弯矩、挠度、频率。经对比研究后发现:①不考虑桥面板现浇层刚度与截面输入模拟桥面板现浇层刚度连续梁桥的挠度、频率相差较大且随着考虑刚度占比增加而增大,弯矩差别可忽略不计;②截面输入和板单元模拟桥面板现浇层刚度的连续梁桥挠度、频率差别较小,弯矩差别较大且随着考虑桥面板现浇层刚度占比增加而增大。在进行桥梁优化设计、旧桥等级评估或者荷载试验时,应考虑桥面板现浇层刚度的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号