首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:高层建筑的基坑稳定与围护结构变形、土层条件、水文条件密切相关,处理得当,可以控制地表沉降和墙体位移.本文根据数理统计原理建立量测点优化布置原则,借助有限元模拟开挖计算结果,分析基坑开挖位移场分布规律和影响因素,从减小量测误差原则出发,提出量测点优化方案,为施工提供依据.研究结论:通过对条形基坑围护结构变形分析、量测点优化、实测数据分析得出以下结论:围护结构水平位移取决于开挖深度、基坑宽度、土层性质、墙体刚度、入土深度;墙顶位移观测点应设在跨中,从跨中向两侧均匀布设,墙体测点从跨中开始,自上而下设置,在墙的支撑作用点处略高于挖深处设测点;基坑开挖过程中,进行实时监测,预测基坑的变形规律,及时采取预防措施,减少变形速率,确保量测点的优化和基坑的施工安全.  相似文献   

2.
当轨道交通车站基坑位于溶洞地层上开挖时,会面临很大的安全问题,研究溶洞对车站基坑开挖稳定性的影响规律有助于改善轨道交通工程施工安全。以南京—句容城际轨道交通工程为例,建立三维有限元模型分析了溶洞对轨道交通车站基坑开挖稳定性的影响。根据基坑开挖及支护过程中支护桩的水平位移、基坑坑底土体隆起量和支护桩后地面沉降的变化规律,确定了溶洞的空间影响范围,并将数值模拟结果与实际监测结果进行了对比,验证了数值模拟结果的准确性。通过模拟基坑与溶洞的不同位置关系、不同溶洞尺寸下的基坑开挖与支护过程,得到相应的围护结构变形和基坑土体位移,进而总结出溶洞位置及其尺寸对基坑开挖及围护结构的稳定性的影响规律。  相似文献   

3.
以深基础为对象,用有限元方法,分析了不同条件下基础围护结构中位移场分布规律及围护结构刚度、入土深度、基础形状和尺寸等因素影响,并根据位移量测相对误差最小原则,对位移量测仪表测点进行优化布置。  相似文献   

4.
考虑热对流和热传导作用,结合Laplace变换和Laplace反演推导基坑土体温度场解析解,并采用Matlab编程求解、分析其温度分布规律。依托哈尔滨某越冬施工的深基坑工程实例,采用有限元数值分析方法,分析冻胀对基坑影响及安全措施控制效果。研究结果表明:基坑暴露在低温环境下的时间越长,土体的冻结深度越深,但冻结深度增加速率随时间逐渐变慢;受冻胀影响基坑围护结构裸露段水平位移增加了11.5%~35.7%,且围护结构角隅位置受冻胀影响最大,冻胀对基坑影响不容忽视;较未设置保温层工况,保温层的设置使围护结构水平位移降低了11.6%~22.6%,保温层隔热效果明显。  相似文献   

5.
围护体系相同的情况下,不同的基坑开挖方式对基坑围护结构及土体变形量的影响有很大差异。以某海相软土深基坑工程为依托,通过三维有限元模拟分析,对比分层开挖与阶梯式开挖所引起的围护结构侧向位移、排桩弯矩、基坑水平位移等参数。结果表明,阶梯式开挖能够有效控制其空间效应并减小基坑支护结构与土体的位移。  相似文献   

6.
依托福州地铁5号线农林大学站基坑工程,通过对其围护墙深层水平位移与支撑轴力实测数据的细致分析,探讨了沿江地铁车站基坑围护结构的整体偏移规律与整体收敛规律。基坑靠山侧与沿江侧不对称地形所引起的偏压效应,使得基坑围护结构整体朝向沿江侧发生一定程度的偏移,因此可适当增大围护墙的嵌固深度,以应对地层偏压效应造成的不利影响。同时基坑围护结构的整体收敛变形曲线呈中间大、两端小的弓形分布,因此在围护墙中段设置大刚度混凝土支撑十分必要,实测结果显示该道混凝土支撑的轴力远大于其它各道支撑。  相似文献   

7.
通过对南宁地铁那洪立交站基坑工程的施工监测,分析了不同施工阶段地下连续墙围护结构的墙顶竖向位移、墙顶水平位移和墙体深层水平位移的变化规律,研究了超长L形深基坑台阶法开挖围护结构的变形特征。研究结果表明:L形基坑围护结构变形的形状效应显著,长边段中部的墙顶竖向位移量最大,交汇处次之,短边端最小;开挖深度较浅时,墙顶竖向位移以沉降为主,随着深度增加,围护结构发生波动隆起变形;同一区段内墙顶水平位移方向相一致,以向坑内变形为主;坑内开挖深度差导致不同深度侧的墙顶水平变形量差异较大,且变形方向相反。此外,还得到了不同开挖深度对应的墙体深层水平位移最大值变化范围及其所处深度范围。  相似文献   

8.
位于天津市武清区的中国铁路总公司主数据中心建筑基坑工程,采用三轴水泥土搅拌桩、钻孔灌注桩及一道钢支撑体系相结合的基坑支护方案。本文阐述基坑支护的关键技术,并分析施工过程中围护结构水平位移、竖向位移及支撑轴力的监测数据。结果表明:围护结构最大水平位移13. 5 mm,最大竖向位移7. 7 mm,周围建筑物最大水平位移3. 65 mm,基坑周边地表最大沉降量4. 8 mm,支撑轴力最大增量25 kN,地下水位最大变化量-10. 60 m。位移及轴力监测结果满足规范要求,支护结构安全可靠。该基坑支护结构实施方案可为类似项目基坑设计提供参考。  相似文献   

9.
超深基坑支护开挖对土体变形影响数值模拟研究   总被引:4,自引:2,他引:2  
研究目的:为了掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,利用理论分析、数值模拟,以土与支护结构相互作用稳定性为研究核心,对深基坑开挖过程中引起的土层位移、地表沉降分布规律以及支护结构的位移、应力改变等相关内容进行研究,掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,从而指导设计工作.研究结果:基坑开挖至设计深度并完成底板施工时,模拟计算基坑外缘地表最大沉降为28.7 mm,施工过程中实测结果为28.46 mm,模拟分析计算结果与实际工程监测结果大致吻合,故研究结果可以指导设计工作.  相似文献   

10.
为得到湿陷性黄土地区基坑近接既有地铁结构的位移规律和控制标准,基于西安地铁5号线车站基坑临近区间隧道和车站施工,采用数值模拟手段,分析不同净距状态下新建基坑开挖引起的地表位移、新建基坑结构位移及既有结构位移,研究新建基坑开挖对既有车站、既有隧道的影响。结果表明:地表沉降值仅在新建基坑与既有结构之间的范围受水平净距影响较大,新建基坑围护结构位移仅在与既有结构邻近的一端受净距影响较大;既有结构向着新建基坑方向发生整体水平移动,且随着净距减小,水平位移增加;应尽量避免净距小于12 m的情况,当净距为18 m时,应控制新建基坑与既有结构邻近侧围护结构的水平位移最大值在15 mm以内。  相似文献   

11.
基坑工程并不是一个孤立体,作为地铁建设中不可或缺的重要部分,基坑工程与周边环境关系紧密、相互影响。周边建筑物的附加不对称荷载对基坑产生偏压,由此会对基坑安全及围护结构受力产生影响。因此,在基坑工程的设计过程中要充分考虑不对称荷载对基坑工程的影响。本文基于Plaxis有限元软件,通过对杭州地铁5号线设计中具体工程实例的模拟研究,分析了临近建筑桩基与基坑开挖过程的相互影响。得出偏压基坑围护结构变形特征与无偏压基坑以及对称荷载基坑不同。坑外土体水平位移、竖向沉降及围护结构水平位移均有不同程度的增大,且偏载对围护结构受力影响较大。同时本文结合具体工程实例,对偏压基坑的设计提出了一些建议。  相似文献   

12.
采用数值模拟与现场实测相结合的方法研究西安地铁车站深基坑变形规律。计算结果表明,桩身水平位移能够直接反映围护结构变形特性,围护桩水平位移最大的地方发生在基坑中部到三分之二基坑深度处,基坑周边地表沉降槽中心距坑壁8 m。将数值计算值与现场实测值对比分析发现,各个工况下桩身水平位移、内支撑轴力以及基坑周围地表沉降的实测值和模拟值趋势基本一致,表明FLAC(有限差分法)数值模拟可为施工前深基坑围护结构设计方案的可行性做出合理评价。  相似文献   

13.
以某偏压荷载非等深基坑工程为背景,利用有限差分法计算软件分析了基坑分层开挖与支护的围护结构及地表沉降等变形规律。研究发现,该工程有偏压荷载一侧开挖较深的围护结构最大水平位移为42 mm,较无偏压荷载侧结构水平位移31 mm多出了11 mm,且偏压荷载侧开挖较浅处围护结构最大水平位移也为31 mm,即结构变形沿基坑纵向有明显的差异;基坑底隆起沿纵向先增后减,在开挖较深位置受偏压荷载、结构变形等因素影响隆起量最大值为58mm,而在开挖较浅位置处隆起量最大值仅为24 mm,差异明显;在偏压侧基坑地表沉降量最大值达28 mm,是无偏压荷载侧地表沉降值的2倍,且偏压侧最大地表沉降值出现的位置(距基坑壁的距离)也是无偏压荷载侧的2倍;沿基坑纵向,地表沉降值有所不同,在开挖较浅处的偏压荷载地表沉降值仅为18 mm。模拟数据与实测数据对比后,误差在允许范围之内,故该结论对于类似工程的安全施工具有一定的实际意义。  相似文献   

14.
基坑变形监测是确保基坑施工安全的必要手段,开展深基坑变形现场监测研究对基坑工程建设具有重要意义。以宁波地铁3号线仇毕站深基坑工程为例,结合岩土工程勘察报告与支护设计方案,对工程区域地表、周边建(构)筑物与地下管线以及工程本身进行监控量测,并根据现场监测结果,对围护结构水平位移、地下连续墙墙顶沉降、地表沉降、管线及房屋沉降、基坑外水位变化、支撑轴力变化情况和发展规律进行了重点分析,得出了宁波软土地区地铁车站深基坑变形的一般规律及受力特征,可为车站基坑变形控制及类似工程的优化设计提供技术支持。  相似文献   

15.
根据施工对地面道路的影响,地铁车站施工可采用明挖法、盖挖法和暗挖法。以某地铁车站明挖顺作施工为背景,利用MIDAS GTS有限元分析软件,建立了基坑明挖顺作和盖挖逆作2种施工方法的施工模型,对围护结构变形进行模拟计算分析。结果显示,明挖顺作法施工围护结构最大位移发生在基坑深度的1/2附近,盖挖逆作法施工围护结构最大位移发生在基坑深度2/3附近。基坑开挖监测得到的基坑明挖顺作时围护结构实际变形结果与模拟计算结果比较,其基本规律相同。  相似文献   

16.
水泥土搅拌桩加锚杆基坑围护结构是一种基坑支护新工艺。结合深圳火车站皮带廊水泥土搅拌桩加锚杆基坑围护工程的变形测试 ,获得该基坑围护结构在开挖过程中变形 (水平位移和沉降 )的数据。通过综合分析 ,探讨这种基坑围护结构的变形特点 ,依据阶段性测试结果 ,对基坑开挖中围护结构安全状态进行分析和预测 ,并讨论如何确定报警值的问题 ,取得了良好效果。  相似文献   

17.
软土地区基坑开挖时,对基坑变形控制要求较高,越来越多的基坑工程采用钢支撑伺服系统进行支护。为探究钢支撑伺服系统在基坑变形中的控制效果,文章基于软土地区某基坑工程,选取钢支撑伺服系统支护典型断面,依据现场监测数据分析深基坑围护结构的变形规律。监测数据分析结果表明:各道钢支撑轴力随开挖深度的增加而增大,基坑开挖期间支撑预加轴力维持在设计预加轴力附近,伺服段土体最大深层水平位移较普通段小36.6%。在软土地区,钢支撑伺服系统对基坑围护结构变形有较好的控制效果,针对围护结构变形要求较高的基坑,可以积极采用钢支撑伺服系统。  相似文献   

18.
目的:为控制新建基坑变形,减小基坑开挖对邻近地铁隧道的影响,需探究轴力控制和位移控制双重控制方法(以下简称“双控法”)下伺服钢支撑系统对基坑及邻近地铁隧道的变形控制效果。方法:依托杭州某基坑工程建立了该基坑与邻近地铁线的数值模型,提出了“双控法”的伺服钢支撑系统轴力模拟方案和位移控制方案,设定了相应的计算步和监测工况。对6种伺服方案下的基坑沉降量及深层水平位移量进行了对比。对不同轴力控制值和单次位移变化量控制值下对基坑的变形影响进行了分析,进而得到本工程的伺服钢支撑系统体系的设置方案。基于此方案,对基坑土体深层水平位移、基坑地面沉降、邻近地铁右线隧道沉降的模拟值和实际监测值进行对比,以分析伺服钢支撑系统变形的控制效果。结果及结论:双层支撑伺服钢支撑系统比单层伺服钢支撑系统的变形控制效果更好。“双控法”控制指标中,轴力控制值的增加可使围护结构的最大水平位移量和地面沉降量明显减小,单次位移变化量控制值的改变对最终变形结果影响不大。“双控法”下的伺服钢支撑轴力系统能够有效控制基坑变形,保护邻近既有地铁隧道结构安全。  相似文献   

19.
地铁车站深基坑变形规律现场监测   总被引:1,自引:0,他引:1  
研究目的:深基坑围护结构设计及其变形规律研究是地铁车站建设中的重要问题之一,开展地铁车站深基坑变形规律研究具有重要的工程应用价值。本文以北京地铁奥运支线折返线车站深基坑为研究背景,根据基坑开挖及围护方案,设计施工监测方案。依据监测资料,重点分析围护桩变形监测数据和基本规律;将钢支撑受力情况和桩体变形相结合分析,研究围护结构各部分的协同作用。研究结论:随着基坑开挖深度的增加和钢支撑的施加,围护桩的变形形态由向坑内的前倾型曲线逐渐变为弓形,最大水平位移发生的位置也随之下移。围护桩的水平位移、水平钢支撑的轴力也随着基坑开挖深度的增加而增大,但其实测值都远小于警戒值,说明围护结构设计偏于保守。  相似文献   

20.
通过收集文献资料、概念分析和基于典型工程的定量计算,认为在控制围护结构水平位移的措施中,首道混凝土支撑能够避免由于轴力损失和地层预降水产生的桩顶位移,且投资增加较少,性价比较高,建议在软土基坑中优先选用;基坑内侧土加固控制基坑变形的效果很好,能减少围护结构的水平位移42%甚至更多,但投资增加较多,建议坑底以下为软土或变形控制标准较高时采用;增加围护结构截面尺寸对变形控制贡献有限,且投资较高,不建议优先选用,仅当其他控制措施无法达到设计要求时再考虑采用;增加基坑竖向支撑道数能够减少20%左右的围护结构水平位移,且投资增加幅度有限,建议变形要求较高时优先选用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号