首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 859 毫秒
1.
设m≥3,n≥2V(Cm.Sn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm.Sn)={u1u2,u2u3,…,u(m-1)um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n}则称Cm.Sn为m个Sn(星)的心联图.V(CmΔSn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(CmΔSn)={v11v21,v21v31,…,v(m-1)1vm1,vm1v11}∪{uivij|i=1,2,…,m;j=1,2,…,n}则称CmΔSn为m个Sn(星)的沿联图.本文给出Cm·Sn和CmΔSn全染色以及全色数.  相似文献   

2.
设m≥3,n≥2V(Cm·Sn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Sn)={u1u2,u2u3,…,u(m-1)um,umu1}∪{uivij|i=1,2,…,m;j=1,2,…,n} 则称Cm·Sn为m个Sn(星)的心联图.V(CmΔSn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(CmΔSn)={v11v21,v21v31,…,v(m-1)1vm1,vm1v11}∪{uivij|i=1,2,…,m;j=1,2,…,n} 则称CmΔSn为m个Sn(星)的沿联图.本文给出Cm·Sn和CmΔSn全染色以及全色数.  相似文献   

3.
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=V(G)∪{v’|v∈V(G)}∪{w} E(μ(G))=E(G)∪{uv’|u∈V(G),v’∈V’且uv∈E(G)}∪{wv’|v’∈V’}其中w不属于V(G),V’={v’|v∈V(G)}。本文得到了路、圆、扇、轮、星、完全图的Mycielski图的全色数。  相似文献   

4.
皇冠图Gn,m的邻点可区别边色数   总被引:4,自引:1,他引:3  
定义皇冠图Gn,m为V(Gn,m)={ui|i=1,2,…,n}∪{vi|i=1,2,…,n|∪i=1 m|uij|j=1,2,…,m},E(Gn,m)={u1u2,u2u3,…u2u1}v1v2,v2v3,…vnv1}∪{u1vi|i=1,2,…,n}∪i=1^n{∪i=1^n{uijij|j=1,2,…,m}∪i=1^n{uijui(j 1|j 1,2,…|j=1,2,…,m-1}),(n≥3,m≥1)。本文得到了Gn,m的邻点可区别边色数。  相似文献   

5.
设G(V,E)为连通简单图,V(G)={v10,v20,…,vp0}.M(G,n)称为G的n级串图,其中V(M(G,n))={vij|i=1,2,…,p;j=0,1,…,,n},E(M(G,n))={vjkvjk|i=1,2,…,n;0≤k≤n,且vi0vj0∪E(G)}∈{vijvij 1|i=1,2,…,p;j=0,1,…,n-1}。证明了对于n≥1,M(G,n)的边色数为其最大度△(M(G,n))。  相似文献   

6.
对于一个(p,g)图G,如果存在一个v(G)到非负整数集N0的一个映射以称为顶点标号)满足:(1)f(u)≠f(v),其中u≠v,且u,v∈V,(c);(2){f(u)+f(v)|uv∈E(G))={k,k+d,…,k+(g-1)d),称图G为(k,d)-算术图。证明了图Fm.4是(d,2d)-算术图和图Fm.6是(d,3d)-算术图。  相似文献   

7.
对图G(V,E),及二值函数f:V→{0,1}记f{v}={u│u∈N[v],且f(u)-1},其中N[v]={u│vu∈E}∪{v}若f满足任意v∈V,│f[v]│≥1,则称f为G的一控制函数,并称f(V)= ∑v∈V(f(v)为f的权;图的控制数γ(G)定义为图的控制函数的最小权,即γ(G)=min{│f(V)│f为G的一控制函数}类似的可定义图的边控制数,本文建立了确定图的控制数的Hopfield网络型和算法。  相似文献   

8.
设G=(V,E)是一个图,一个实值函数f:V→{-1,+1}满足∑v∈N[u]f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个符号控制函数。图G的符号控制数定义为γs(G)=min{∑v∈V(G)f(v)|f为图G的符号控制函数}。研究了偶图的符号控制问题,主要给出了偶图符号控制数的两个下界。  相似文献   

9.
图Pm∨Wn与Wm∨Wn的第一类弱全色数   总被引:1,自引:1,他引:0  
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若f满足(1)uv∈E(G),u≠v,f(u)≠f(v);(2) uv,uw∈E(G),v≠w,f(uv)≠f(uw);则称f是G的第一类弱全染色.给出了路与轮,轮与轮联图的第一类弱全色数.  相似文献   

10.
对于一个图G=G(V(G),E(G)),用V(G)和E(G)表示图的顶点集合和边集合.图G的3个顶点的路边和顶点着有5种色,跑遍图G的所有k星全着色所取得的最小数k称为图G的星全色数,简记为sχt(G).主要研究了Cm o Cn和Cm o Pn2种冠图的星全染色规律,并得出它们的星全色数.  相似文献   

11.
引入了图的反符号星控制的概念,设G=(V,E)是一个没有孤立点的图,一个函数f:E→+{1,-1}对一切点v∈V(G)所在的星中的边e有∑f(e)≤0成立,则称,为图G的一个反符号星控制函数.而γ’rss(G)=max{∑f(e)|f为图G的反符号星控制函数,e∈E(G)}称为图G的反符号星控制数.我们主要给出了图的反符号星控制数的上界,并确定了完全图与完全二部图的反符号星控制数.  相似文献   

12.
简单连通图G(V,E)的k-正常全染色,称为邻点可区别的,如果对G(V,E)的任意相邻两顶点,其顶点的颜色及关联边的颜色构成的集合不同。这样的k中最小者称为G(V,E)的邻点可区别全色数。研究了路与双星图的联图Pm∨Sn,n邻点可区别的全染色问题,得到了联图Pm∨Sn,n邻点可区别的全色数。  相似文献   

13.
设G=(V,E)是一个图,一个函数f:E→-1,+1如果∑f(e)≤0 e∈E[v]对于至少k个顶点v∈V(G)成立,则称f为图G的一个反符号星k控制函数,其中E(v)表示G中与v点相关联的边集.图G的反符号星k控制数定义为γrkss(G)=max{∑f(e) e∈E│f为图G的反符号星k控制数}。得到了一般图的反符号星k控制数的若干上界,对文[6]中的结果进行了推广,还确定了路Pn和圈Cn的反符号星k控制数。  相似文献   

14.
扇与轮联图的全色数   总被引:1,自引:0,他引:1  
图的全染色是指对顶点和边同时染色,使得相邻或相关联的元素染不同的颜色,其所用最少染色数称为全色数,记为Xr(G).就扇与轮的联图Fm∨Wn,本文得到了在m和n不同取值情况下的全色数.  相似文献   

15.
设G是一个图,一个函数,f.V→{-1,+1}如果∑v∈N[u]f(v)≥1对于每个点u∈V成立,则称f为图G=(V,E)的一个符号控制函数.一个图G的符号控制数定义为γs(G)=min{∑v∈V(G)f(v)|f为图G的符号控制函数}.该文主要给出了一个图G的符号控制教γs,(G)的若干新下限,并刻划了满足γs,(G...  相似文献   

16.
引入了图的反符号边全控制的概念.设G=(V,E)是一个图,N(e)表示G中与e相邻的边集,函数f:E→{+1,-1},如果对任意e∈E(G)均有∑f(e’)≤0,其中e’∈N(e),则称,为图G的一个反符号边全控制函数.而γ’st(G)=max{∑f(e)|f为G的反符号边全控制函数,e∈E(G)称为图G的反符号边全控制数.分别给出了图的反符号边全控制数和^符号边控制数的一个界限,并确定了轮图的反符号边全控制数和完全偶图Km,n的珏符号边控制数的下界.  相似文献   

17.
设G=(V,E)为一个n阶无向简单图,N(v)={u∈V|uv∈E},k为一个整数(1≤k≤n).若函数fV→{-1,1}满足条件:V中至少有k个顶点v,使得f(N(v))≤1成立,则称f为图G的一个负k-子确定函数.称βkD(G)=max{f(V)|f为图G的负k-子确定函数}为图G的负k-子确定数.文中主要给出了图...  相似文献   

18.
设正整数 xi = f (vi)是图 G 的顶点 vi 的着色,H 是 G 的子图,f ()H 是 H 的顶点着色的和,若对任意正整数j(1 j  f ()G )都存在 G 的连通子图 H 使得 j = f ()H ,则称 f 是 G 的 IC -着色.若 f ()G 最大,则称 f ()G 为 G 的 IC -指数.考虑了圈 Cn 的 IC -着色和 IC -指数 I ;得到了:当 n =10111214时 Cn 的 IC -指数  相似文献   

19.
G(V,E)是一个简单图,忌是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射.如果任意uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称,是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.本文给出了扇与星、路、圈间的多重联图的邻点可区别E-全色数.其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号