首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
本文综述导电胶的种类、组成及应用.从导电填料粒子与树脂的界面相容性、导电胶接触电阻稳定性、耐碰撞冲击性能研究、电迁移等方面,对导电胶的导电性能、机械性能的影响因素及其作用机理进行阐述.了解影响导电胶综合性能的综合因素,对高品质导电胶片状银粉的开发提供理论指导.  相似文献   

2.
秦洪德  纪肖  申静 《船海工程》2011,40(1):1-4,8
借鉴菱形抗爆抗冲击舷侧结构形式,进行系列数值仿真实例计算,对比分析菱形舷侧结构和传统形、Y形以及三明治夹层板舷侧结构的耐撞性,探讨菱形角度、高度和厚度对耐撞性的影响,仿真结果表明,菱形结构形式可以提高油船舷侧结构耐撞性,而且最佳尺度组合使其耐撞性最优,在此基础上得出最佳菱形角度和高度。  相似文献   

3.
蜂窝式夹层板耐撞性能研究   总被引:8,自引:0,他引:8  
蜂窝式夹层板因有结构轻、强度高等优越的力学性能使其在卫星、飞机、高速列车、快艇等轻型交通系统中得到了广泛的应用。为了了解该结构的横向抗撞性能,利用有限元仿真软件MSC/Dytran分析了蜂窝式夹层板结构在横向冲击载荷作用下的损伤变形、碰撞力、能量吸收、耐撞性指标;并与等效平板进行了比较分析;讨论了结构尺寸参数和耐撞性能的关系。研究结果表明:蜂窝式夹层板具有良好的耐撞性能;结构密度是影响结构耐撞性能的关键因素;夹芯层高度对结构的耐撞性影响不大,随夹芯层高度增加结构吸能增加。  相似文献   

4.
白志刚  杨文昌 《港工技术》2012,49(2):24-26,67
通过ABAQUS有限元分析软件对一般沉箱和超大型沉箱的贮仓压力进行数值模拟,并对比分析数值模拟结果与按现行规范中贮仓压力公式的计算结果。经过对不同参数组计算结果的对比分析后发现:填料的内摩擦角、弹性模量、泊松比,以及填料与仓格边壁间的摩擦系数均是影响贮仓压力的主要参数。现行规范中的贮仓压力计算公式,仅考虑填料内摩擦角和填料与仓格边壁间摩擦系数的影响,而不考虑填料的弹性模量和泊松比影响的假设值得商榷。  相似文献   

5.
研究了填料塔中液体分配对分离的影响,详细讨论了液体分配不均程度对分离的影响以及液体的初始分布对分离的影响。为了使填料塔能够得到设计的分离效果,液体在填料层中的分布要尽快达到自然流分布,消除液体分配不均对分离的影响。  相似文献   

6.
DMT-SL无机型电缆密封填料是一种新颖的船舶电缆密封材料,具有无毒、防火、水密性好、施工简便等优点. 本文介绍了DMT-SL无机型电缆密封填料的研制、实船使用情况和技术性能指标.并对该填料的施工工艺、设备以及原材料的存放要求进行了详细的阐述.  相似文献   

7.
蜂窝式夹芯层结构横向耐撞性能数值仿真研究   总被引:5,自引:0,他引:5  
蜂窝式夹层板结构具有强度高、结构轻等优越的性能,其中夹芯层结构起关键作用。文中采用非线性有限元软件MSC/Dytran模拟仿真了蜂窝式夹芯层结构在横向冲击载荷作用下的渐进屈曲过程,分析了结构的耐撞性能,结构参数对耐撞性能的影响。研究分析表明:蜂窝式夹芯层结构在横向冲击载荷作用下具有稳定的压溃载荷、较长的有效行程,具有优良的吸能特性。结构密度是影响结构耐撞性能的关键因素;夹芯层高度对结构的耐撞性影响不大,增加结构夹芯层高度结构吸能增加。  相似文献   

8.
船体结构耐撞性优化设计的主要目的是在船舶碰撞研究的基础上对结构进行优化设计,提高船体结构的耐撞性能。基于正交试验设计、BP神经网络和遗传算法,形成了船体结构耐撞性能优化设计方法。提出了一种耐撞性综合指标,并以此指标作为优化的目标函数,以结构质量为约束条件,利用MSC/Dytran有限元软件对船舶碰撞进行数值仿真,完成对某船舷侧结构进行耐撞性优化设计,结果表明优化过后结构耐撞性能有较大提高,这为结构耐撞性能优化设计提供了一种新的思路和方法。  相似文献   

9.
通过试验分析认为,船舶电缆穿过7551—Ⅱ填料盒时,对其载流量有所影响;若使用DMT-W型无机填料,可不考虑填料盒的影响,加防护罩后,则电缆必须降低载流量使用。  相似文献   

10.
生物法净化船舶舱室有害气体技术   总被引:1,自引:0,他引:1  
选取塑料鲍尔环和圆柱状活性炭作为填料,采用生物滴滤塔对于船舶舱室低浓度苯的生物净化效率和去除负荷进行了研究。实验测定了填料种类、填料高度、进气浓度、停留时间等操作因素对净化效率的影响。结果表明,在实验操作范围内,生物滴滤塔Ⅰ、Ⅱ、Ⅲ对于苯的最大去除负荷分别达到36.97,79.14和185.42 mg/(L.h),组合填料的净化效率和去除负荷都优于单一填料。  相似文献   

11.
以裕溪一线船闸扩容改造工程中34 m口门三角闸门的底枢蘑菇头和轴为研究对象,从宏观金相、微观组织、X射线衍射仪、硬度计检测熔覆层的表面硬度以及盐雾试验机测试试件的耐腐蚀性等方面,对不同的基体材料和激光熔覆粉末进行试验对比研究.结果表明:Ni40粉末和Co40粉末都具有较高的硬度和优良的耐腐蚀性能,满足底枢蘑菇头和轴激光...  相似文献   

12.
铝粉是一种用途极广的添加剂,在高温高湿的环境下极易氧化。如果不经过钝化处理,则会严重影响烟火药的性能,所以在实际的生产和研究中,对铝粉进行钝化处理是必要和非常重要的。本文通过固相包覆法,使用硬脂酸作为钝化剂,对铝粉进行物理包覆,并对其前后的性能(抗氧化性)进行了测试。结果表明,随着硬脂酸含量的增加,钝化铝粉的抗氧化性呈增强的趋势,结合在发光信号剂中性能情况,当铝粉钝化处理中硬脂酸含量为5%时,达到最理想的包覆效果,硬脂酸含量的增加不能达到更好地包覆效果。  相似文献   

13.
雷雯 《船电技术》2021,41(2):57-59
某型直流电机的电刷长时间磨损产生碳粉而导致电机绝缘电阻低,其相关的结构还存在优化空间.根据实际应用需求,分析直流电机的结构,并对电机加以优化设计.通过试验验证优化设计的电机性能优良,证明优化设计达到预期目标.  相似文献   

14.
试验针对金塘大桥箱梁海工混凝土所处环境的特点,采用粉煤灰与矿粉复掺和控制混凝土用水量的技术,配制C50预制箱梁海工混凝土。试验结果表明,C50箱梁海工混凝土工作性能和力学性能良好,掺入一定量的矿物掺合料可以提高海工混凝土抗开裂、体积稳定性、抗碳化和氯离子渗透等耐久性性能。  相似文献   

15.
为满足海洋环境下高性能混凝土的施工要求,开展了复掺粉煤灰与石灰石粉海工自密实高性能混凝土的试验研究。试验结果表明,在复掺粉煤灰和石灰石粉掺量为40%的条件下,掺入10%~30%粉煤灰自密实混凝土具有较高的流动性、填充性、间隙通过性和抗离析性等工作性,满足自密实混凝土的施工要求;28 d抗压强度大于50 MPa,56 d的电通量小于1 000 C,90 d扩散系数小于1.5×10-12 m2/s,具有较高的抗压强度和抗氯盐侵蚀性能,满足海洋环境下抗氯盐侵蚀的耐久性要求。  相似文献   

16.
为满足海洋环境下高性能混凝土的施工要求,开展了复掺粉煤灰与矿渣粉海工自密实高性能混凝土的试验研究。试验结果表明,在复掺粉煤灰和矿渣粉掺量为60%~70%的条件下,掺入20%~30%粉煤灰自密实混凝土具有较高的流动性、填充性、间隙通过性和抗离析性等工作性,满足自密实混凝土的施工要求;28 d抗压强度大于50 MPa,56 d的电通量小于1 000 C,90 d扩散系数小于1.5×10-12 m2/s,具有较高的抗压强度和抗氯盐侵蚀性能,满足海洋环境下抗氯盐侵蚀的耐久性要求。  相似文献   

17.
针对ASTMC1202试验方法的不足,借鉴混凝土氯离子扩散系数快速测定的RCM法对高性能混凝土的导电性进行了研究,包括不同的复合高效减水剂、水胶比以及复合矿物掺合料对高性能混凝土导电性的影响。28 d和56 d的电通量测试结果表明,减水剂品种对抗压强度的影响更为显著;复合矿物掺合料是改善高性能混凝土中氯离子渗透性的有力途径,56 d电通量均在500 C以下,其中,磨细矿渣和HK-P复掺的效果最佳。  相似文献   

18.
针对海洋环境下快速施工用混凝土材料的技术需求,采用硫铝酸盐水泥和适量的矿渣粉和硅灰,并掺入专用的高性能减水剂和缓凝剂配制快速施工用高耐久性混凝土,并对其性能进行试验研究。结果表明,快速施工用高耐久性混凝土工作性良好、坍落度损失小,具有良好的抗氯盐侵蚀性能,并能满足泵送施工要求,可为海洋环境下快速施工提供一条有效的技术途径。  相似文献   

19.
贵金属钌粉制备技术及应用研究进展   总被引:1,自引:0,他引:1  
钌粉是制备钌靶材、高纯钌化合物等材料的关键原材料之一。随着电子元器件的发展,对钉粉的需求量越来越大。在对贵金属粉末产业的评价中,往往会忽略钌粉末。本文综述了当前钌粉应用研究的进展状况及钌粉制备技术的现状,尤其是突出了日本在制备高纯钌粉方面的技术状况。  相似文献   

20.
先通过液相化学还原法制备原始银粉,再利用机械球磨法制得片状银粉,对银粉的形貌、粒度分布、粉体密度、比表面积、水分灰分进行表征,研究原始粉制备工艺、球磨工艺对片状银粉形貌尺寸、粒度分布及密度的影响。结果表明,以分散性好及平均粒径约3μm的球形银粉为原始银粉、无水乙醇为介质,2 mm尺寸规格的氧化锆球为磨球,球磨时间为35 h,机械球磨法制得片状化程度高、粒径均匀、平均粒径小于7μm的片状银粉。将片状银粉用环氧树脂体系配制成IC封装导电银胶,测试导电胶固化前的物性参数、固化片的特性、固化粘接特性及环境测试,并常温下观察是否分层,均达到了应用指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号