首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

3.
Despite its rarity, Dinophysis acuminata is in terms of economic impact, the first toxic algal species along the coasts of Western Europe. It is observed at low levels (< 20 cell l− 1) all the year round but toxic events occur mainly in late spring and summer. D. acuminata ecophysiology is largely unknown due to the inability to culture it. Therefore, standard biomass models based on inorganic nutrition are largely inadequate. Presently, any progress in describing the conditions of population growth of this species will be a step forward to prediction of harmful events at the coast. This species has been observed at increased, albeit low cell densities in retentive eddies located in pycnocline layers. A concentration build-up of one species results from the balance between growth and loss processes, one of the latter being dispersal. The scales of interest for a D. acuminata population are of the order of 10 nautical miles on the horizontal and duration of 10 days, for a reported achievable growth rate of 0.6 day− 1. A three dimensional (3D) hydrodynamical model of the Bay of Biscay has been elaborated to reproduce hydrological structures over the last decade. We attempt here to relate the existence of retentive structures revealed from simulations under realistic forcing conditions and the toxic coastal events recorded in the 10-year time series of the French plankton monitoring network database. The eddies in the coastal area appear to be directly related with the Dinophysis coastal events and they may be a potential effective tool to predict those.  相似文献   

4.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

5.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

6.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1.  相似文献   

7.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

8.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

9.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

10.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

11.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

12.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

13.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   

14.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

15.
Phytoplankton, bacteria and microzooplankton were investigated on a transect in the Bellingshausen Sea during the ice melt period in November–December 1992. The transect along the 85°W meridian comprised seven stations that progressed from solid pack-ice (70°S), through melting ice into open water (67°S). The abundance, biomass and taxonomic composition were determined for each component of the microbial community. The phytoplankton was mostly dominated by diatoms, particularly small (<20 μm) species. Diatom abundance ranged from 66 000 cells l−1 under the ice to 410 000 cells l−1 in open water. Phytoplankton biomass varied from <1 to 167 mg C m−3, with diatoms comprising 89–95% of the total biomass in open water and autotrophic nanoflagellates comprising 57% under the ice. The standing stocks of autotrophs in the mixed layer ranged from 95 mg C m−2 under the pack-ice to 9478 mg C m−2 in open waters. Bacterial abundance in ice-covered and open water stations varied from 1.1 to 5.5×108 cells l−1. Bacterial biomass ranged from 2.4 mg C m−3 under pack-ice to an average of 14 mg C m−3 in open water. The microzooplankton consisted mainly of aloricate oligotrich ciliates and heterotrophic dinoflagellates and these were most abundant in open waters. Their biomass varied between 0.2 and 54 mg C m−3 with a minimum at depth under the ice and maximum in open surface waters. Microheterotrophic standing stocks varied between 396 mg C m−2 under pack-ice and 3677 mg C m−2 in the open waters. The standing stocks of the total microbial community increased consistently from 491 mg C m−2 at the ice station to 13 155 mg C m−2 in open waters, reflecting the productive response of the community to ice-melt. The composition of the microbial community also shifted markedly from one dominated by heterotrophs (82% of microbial stocks) at the ice station to one dominated by autotrophs (73% of microbial stocks) in the open water. Our estimates suggest that the microbial community comprised >100% of the total particulate organic carbon (POC) under the ice and 62–66% of the measured POC in the open waters.  相似文献   

16.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

17.
Microphytobenthos biomass has been measured at several coastal sites on the SE of the main island of the Kerguelen Archipelago (Indian Ocean), during several austral summers (1985–1992), using a conventional fluorometric method. Heterogeneity tests, conducted on two different intertidal sites (Port-Aux-Français, PAF; and Port-Raymond, PRA), showed low standard deviations, whereas the mean concentrations were highly different. Pigment concentrations showed a high variability related to the characteristics of the sediments: from low biomass in coarse intertidal sand, submitted to intense scouring (0.32±0.31 μg Chl a g−1 dw, 0.29±0.14 μg Phaeo g−1 dw) to high biomass in intertidal muddy sand in sheltered areas, particularly along estuaries (54 μg Chl a, 15 μg Phaeo g−1 dw at Korrigan). The subtidal muddy sediments under a Macrocystis pyrifera (Linné) and Durvillaea antarctica (Chamisso in Choris) belt exhibited high concentrations in phaeopigment (Phaeo) (up to 136±83 μg g−1 dw; PRA), while the concentration of chlorophyll a (Chl a) was relatively low. The dense macroalgal canopy supports an important epiphytic diatom biomass (mainly the genera Cocconeis Ehrenberg and Grammatophora Ehrenberg), which is sedimenting after degradation and is in part responsible of the high levels of Phaeo in all sediments. Macroalgal debris were observed, but diatom frustules were dominant in most surficial subtidal sediments. A circatidal mud, in the Morbihan Bay, made of a sponge spicule mat (50 m deep; 4.96 μg Chl a g−1 dw), showed a very low Chl a/Phaeo ratio (0.1), while it reached up to 6 in intertidal sand. Surprisingly, a penguin rookery beach, at the east side of Courbet Peninsula, was characterized by a very low biomass (0.07±0.04 μg Chl a g−1 dw), while it was nutrient enriched, particularly with nitrates.In comparison with the data at the similar latitude, but in temperate regions from the Northern Hemisphere, the microphytobenthos biomass, recorded at Kerguelen's Land, exhibited relatively high pigment concentrations, particularly the Phaeo, and supported a dense and diversified subtidal macrofauna composed of polychaetes (particularly Thelepus extensus Hutchings and Glasby), sea urchins, mytillids and gammarids. The exuberant macroalgal canopy, coastal indentations and low tidal amplitude must be in part responsible of these large benthic primary and secondary biomasses.  相似文献   

18.
We present an approach that allows the estimation of vertical eddy diffusivity coefficients from buoy measurements made at two or more depths. By measuring the attenuation and phase lag of a scalar signal generated periodically at the surface as it propagates downwards, the vertical eddy diffusivity coefficients can be calculated as KωΔz2/2ln221), where α21 is the ratio of the real amplitudes at frequency ω at the two depths separated by Δz− z1; as KωΔz2/2, where φ is the phase lag at the frequency ω; or as KΔz2/ln2(U2/U1), where U2/U1 is the ratio of the complex signal amplitudes at the two depths. The method requires that horizontal fluxes be small at the ω frequency and that the signal-to-noise ratios at the two depths allow the determination of the amplitude and phase of ω.Application of this method to summertime 2004 western Long Island Sound oxygen and temperature buoy measurements at two depths provides a time-series of two-day average vertical eddy diffusivity estimates. Using these eddy diffusivities in conjunction with measured vertical concentration gradients, we obtain a time-series of vertical transport rates for oxygen and heat and estimate mean downward fluxes for June and July as 150–260 mMol m− 2 day− 1 and 100–400 W m− 2 respectively. These estimates are of a similar magnitude to sub-pycnocline O2 and heat demands of 240 ± 200 mMol m− 2 day− 1 and 180 ± 60 W m− 2 that we infer from simple budgets, implying that vertical transport is significant to both budgets.The eddy coefficients obtained from the independent O2 and temperature measurements have a 68% correlation, and the O2 flux estimates show a correlation of 41% to measured rates of change in bottom dissolved oxygen levels. Our results indicate that extended time-series of eddy diffusivity coefficients can be obtained from in situ buoy measurements and the method shows promise as a way to constrain the vertical transport variability in budgets of dissolved materials in estuaries.  相似文献   

19.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

20.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号