首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
矩阵传递法是解决梁结构弯曲振动的有效方法。基于经典传递矩阵法,将海洋立管离散成一系列集中质量和弹性梁单元,可建立一种快速计算海洋立管模态参数(固有频率及模态振型)的方法。通过计算发现,当总传递矩阵行列式值为0时,迭代频率即为立管的固有频率,基于此可求立管的模态振型。适当增加立管的离散单元数可使其固有频率值满足精度的要求。对立管轴向变张力和恒张力这两种情况下的模态进行了比较,发现由表观重力和管内外压差引起的轴向变张力对海洋立管的模态响应有一定的影响,立管的模态位移幅值比恒张力情况下的偏低一些。  相似文献   

2.
TLP立管系统以丛式方阵排列,台风条件下立管在波浪、海流及平台的联合作用下可能发生碰撞,有必要深入研究TLP串行立管系统的碰撞情况。文章基于DNV-RP-F203规范和Huse半经验尾流模型,提出台风条件下串行立管下游立管来流速度计算方法和立管系统碰撞分析方法,建立串行立管—井口—导管系统耦合有限元模型,研究台风条件下串行生产立管系统碰撞时的力学特性,在整体碰撞分析的基础上进行立管局部碰撞精细化分析,对比分析立管局部碰撞理论解和仿真解的不同。结果表明:下游立管来流速度的计算至少采用文中建立的方法迭代3次。串行立管发生碰撞时的最大应力发生在泥面导管处,碰撞位置应力发生了突变;立管发生碰撞的位置在水深100-120 m范围内。立管局部碰撞分析的理论解和仿真解基本吻合。  相似文献   

3.
立管强度分析是海底管道设计的重要内容之一.针对绑扎式立管系统,应用有限元软件AUTOPIPE 8.5建立乐东22-1气田外输立管系统的模型,并分别依据DNV-OS-F101、DNV 1981、ASME B31.8三种设计规范对其进行强度计算.综合考虑规范对立管强度的要求,防止发生压溃和屈曲扩展的要求及限制立管发生漂浮的要求三个条件,确定了满足条件的最小壁厚.最后根据计算结果比较了三种规范对于立管强度计算的不同适用性.  相似文献   

4.
庞建华  宗智  郑向远  周力 《船舶力学》2018,22(8):955-966
文章针对深海立管长细比非常大的结构特征,视立管为质量集中的多自由度索模型系统。通过有限体积法将该模型系统离散为多个有限体单元,首次提出基于应变能计算立管动态刚度矩阵的算法,并采用IVCBC涡方法计算有限体的外载荷,构建了一种三维数值研究深海立管涡激振动的新方法。应用该数值计算方法探索了立管耦合前后的振型、尾流模型、流体力以及泄涡频率的特征。发现了立管涡激振动的涡泄频率不再满足Strouhal数的规律和多频"锁定"现象导致立管出现多种高阶模态振动共存的特征,该研究为立管的设计制造提供了重要的指导意义。  相似文献   

5.
驳船升沉与横荡运动下的海洋立管动力响应   总被引:2,自引:0,他引:2  
以水面驳船的升沉和横荡运动作为立管上端上端的激励条件,选用“皮尔逊-莫斯科维奇”海浪谱,用Morison方程估算作用在立管上的流体动力,立管上端与驳船连接处作允许任意弹性旋转固定假设,用有限元法进行空间域离散,并用中心差分法对立管的动力响应进行了系统时域模拟。  相似文献   

6.
基于CFD的多弹性立管升力与阻力系数研究   总被引:1,自引:0,他引:1  
基于Ansys11-Cfd软件模拟横向和竖向双立管6倍中心间距下立管的绕流情况,采用o-grid划分方法对立管处进行加密处理,使结果分析更加精确。针对6倍立管中心间距,横向和竖向排列情况,研究立管升力和拖曳力系数的变化,通过分析比较单立管和不同排列方式的双立管的升力和拖曳力系数,发现弹性情况与立管刚性情况存在很大的区别,弹性情况更符合真实情况。  相似文献   

7.
海洋波浪,流激励下的隔水管管线动力稳定性   总被引:1,自引:0,他引:1  
本文以一根在上部允许作任意弹性旋转为均匀,连续垂直隔水管系统进行了动力稳定性分析,水面船的升沉和横荡运动作管子上端的激励条件,采用了Pierson-Moskowitz波浪谱描述了波浪环境,用Morison方程估算了作用在立管上的流体动力,采用有限差法分求解了立管运动方程,计算了管子临界位移和弯矩分布。  相似文献   

8.
基于顶部张紧式立管动力分析的关键参数研究   总被引:1,自引:0,他引:1  
张崎  杨洪彪  黄一  张日曦 《船舶力学》2012,16(3):296-306
文中提出了一种适用于工作于南中国海张力腿平台(TLP)的顶张紧式立管(TTR),并利用有限元软件ABAQUS/AQUA对该立管进行了模拟分析,计算用以预测立管波浪飞溅区和立管下部区域在波浪以及平台联合作用下的影响。计算时采取时域计算方法,计算过程中考虑了几何非线性的影响。并在计算完成TTR在位动力分析的基础之上,做了一定量的参数敏感性分析,重点考察立管侧向位移,弯矩以及等效应力水平对TTR一些重要参数的敏感性。结果表明,计算顶张力TTR动力分析时,必须考虑平台侧向位移跟轴向位移的耦合作用,立管响应受其顶部TLP平台以及张力比TTF的影响较大。随着立管顶部张力比TTF的增加,立管的变形逐渐变小,但顶部张力的增加同时增加了立管内部的等效应力,立管设计时应充分考虑到这两者之间的"平衡"关系。  相似文献   

9.
董晓磊  宗智  孙雷  周力 《船舶力学》2012,16(7):787-796
针对深海立管长细比非常大的结构特性,使用索模型单元计算结构的非线性刚度阵,并验证了模型的有效性;在立管离散点处的平面上考虑结构与流体的耦合作用,采用离散涡方法计算了立管二维模型在均匀海流下的涡激升力载荷,为随机振动分析提供载荷谱,用于构造虚拟激励。最终将立管的涡激振动看作平稳随机过程,采用随机振动理论中的虚拟激励法求解立管在涡激力激励下的响应。基于P-M准则,对响应进行计算得到立管的年损伤率,实现了深海立管的疲劳损伤预报。  相似文献   

10.
高云  宗智  周力  曹静 《中国舰船研究》2010,5(5):54-58,63
针对钢悬链式立管的特点,采用了简化后的振动模型,在ANSYS的CAE模块中根据悬链线方程建立了立管的有限元模型,并对立管进行了模态分析。通过对前若干阶模态进行后处理,得到包括归一化振型、斜率以及曲率的模态输入文件,将此模态文件输入SHEAR7中,进行涡激振动分析,计算出立管年疲劳损伤率。计算结果表明:立管的疲劳损伤沿着立管轴线方向呈振荡性质,且最大疲劳损伤出现在边界区域,随着水流速度的增大,立管的疲劳损伤的峰值呈上升趋势。  相似文献   

11.
波浪作用下海洋立管试验研究及ANSYS数值模拟   总被引:1,自引:0,他引:1  
海洋立管在石油工业生产中有着非常广泛的应用,同时也是薄弱易损的构件之一。立管管内有高温高压的流体流过,管外承受海洋环境荷载尤其是波浪荷载的作用,受力比较复杂。由于中国大部分的海上油田水深都比较浅,所以重点研究浅水中的海洋立管。运用相似理论将实际立管模型缩放为试验模型,在管内流体流动及管外波浪荷载作用下,测量立管动力响应,并与Ansys有限元数值模拟结果进行了比较。  相似文献   

12.
研究基于可靠度的方法,对深海复合材料悬链线立管进行优化设计分析。对于正交各向异性层合复合材料结构而言,叠层顺序不同、各层铺角变化以及层间厚度差异等都会影响到结构的承载能力,因此,有必要引进可靠度作为优化设计指标。首先,根据经典层合板理论计算整体模型的等效属性,建立悬链线立管整体分析模型,得到关键截面响应,以此作为局部分析模型的约束;然后,运用试验设计方法构建Kriging近似模型;最后,利用蒙特卡罗撒点方法对比分析确定性优化与可靠性优化的结果。研究表明:优化后的深海复合材料立管在满足应力强度设计的要求下可有效降低结构重量,所提出的基于可靠度的优化设计复合材料悬链线立管具有可行性。  相似文献   

13.
为分析海洋立管受不同形式的轴向张力作用时的模态求解问题,用哈密尔顿原理建立理论模型,讨论模态的计算方法,并分析相关参数对结果的影响。结果表明,在相同的张力因子下,随着立管长度增大其固有频率主要受张力的控制;在深水中因表观重力引起的沿轴向张力的线性变化不可忽略,对频率和振型都有重要影响,张力因子的增大使频率提高,这种影响对结构长度变化敏感;频率随附加水质量系数的增大而降低。  相似文献   

14.
开发了对浮式平台系统进行耦合动态分析的全时域程序。采用二阶时域方法计算水动力荷载,在此方法中,对物面边界条件和自由水面边界条件进行泰勒级数展开,利用Stokes摄动展开分别建立相应的一阶、二阶边值问题,而且此边值问题的计算域不随时间变化。采用高阶边界元方法计算每一时刻流场中的速度势,利用四阶预报校正法对二阶自由水面边界条件进行数值积分。在自由表面加入一个人工阻尼层来避免波浪的反射。对于系泊缆索/立管/张力腿的动力分析,在一个总体坐标系中对控制方程进行描述,采用基于细长杆理论的有限元方法进行求解。在耦合动态分析中,采用Newmark方法对平台和系泊缆索/立管/张力腿的运动方程同时进行求解。利用开发的耦合分析程序对一个桁架式Spar平台的运动响应进行了数值模拟,给出了平台的位移和系泊缆索/立管上端点的张力,并得到了一些重要结论。  相似文献   

15.
王芳 《上海造船》2017,33(2):10-17
从水面钻井平台与水下立管联合作业的安全角度出发,提出一种将钻井立管的力学响应限制特性引入水面平台动力定位闭环控制中的位置保持方法,实现水面钻井平台(或船舶)基于立管角度响应的动态定位。利用有限元方法建立包括立管系统质量、系统刚度、结构阻尼和水动力载荷在内的立管运动控制模型。联合水面浮体和水下立管的低频运动特性建立水面浮体运动偏移与水下立管顶端角度及末端角度的相对运动关系模型。在此基础上,设计基于立管运行响应的动力定位控位方法,实现对立管顶端角度及末端角度的安全控制。仿真结果表明,所提出的方法可行,在外界突变的环境载荷瞬时作用于水面浮体时,能更快地跟踪新的期望最优位置,保证钻井立管运行在安全界限内。  相似文献   

16.
The objective of this paper is to examine non-linear bending of a flexible elastic bar near fixed termination and to develop analytical solutions that can be used in the design of bend stiffeners. The non-linear bending of prismatic bars of finite and se-infinite lengths is solved analytically, and results are employed to re-visit the problem of the “ideal” bend stiffener, which provides a constant curvature over its entire length. A complete solution is derived for all properties of the ideal bend stiffener, which is not limited by any assumptions on the system geometry and provides an improvement over known formulations. Other features of the non-linear bending of elastic bars are examined and examples are given to demonstrate application of the present theory to sizing bend stiffeners for flexible risers.  相似文献   

17.
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage(OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser; nevertheless, the former presents better response performance.  相似文献   

18.
As offshore hydrocarbon production moves towards ultra-deep water, flexible risers have to withstand the huge hydro-static pressure without collapse. They are designed with strong collapse capacities, allowing them to operate under the condition where their annuli are flooded by the seawater. However, initial imperfections can weaken the collapse capacity under such a flooded condition, triggering the so-called “wet collapse”. Two common initial imperfections, the carcass ovality and the radial gap between the carcass and pressure armor, would reduce the collapse strength of flexible risers significantly. Mostly, collapse analyses are performed through numerical simulations, which are less feasible for the design stage of flexible risers comparing with analytical models. To date, there are few analytical models available in public literature to predict the wet collapse pressure of flexible risers accounting for initial ovality and gap. To meet this demand, an analytical model is established in this paper to address these issues. This model is developed as a spring-supported arch, solving the collapse pressure with stability theories of ring and arched structures. This analytical model is verified by numerical simulations, which gives prediction results that correlate well with the numerical ones.  相似文献   

19.
Flexible risers have been widely utilized for the transfer of oil and gas products from a well to production units. The components of flexible risers, unlike steel risers, experience complex contact phenomena during bending. The contact between helical wires and adjacent layers especially causes a significant level of bending nonlinearity, making it hard to estimate the structural responses. Accordingly, a large-scale dynamic analysis of flexible risers usually involves an analytical model that predicts the bending moment and axial stress of helical wires based on theoretical approaches. The analytical model consists of an axis-symmetrical model and a bending model. Among them, the bending model plays a critical role in the prediction of the bending responses of flexible risers. The conventional bending models usually neglect the shear deformation of internal layers and continuity of sliding force, which leads to a significant error of analysis. Furthermore, the previous bending models assume that the contact pressure on helical wires is constant during bending. In real operating conditions, however, most flexible risers experience a considerable change of tension that governs the slip of helical wires. Hence, the current study presents a new dynamic analysis method for flexible risers. The suggested analytical model improves the bending model based on an accurate estimation of the internal strain field considering the shear deformation and continuous sliding force. Also, this study proposes a stiffness update method to reflect the effect of varying tension in the dynamic analysis. The presented method updates the bending property of flexible risers considering the continuous change of the contact pressure from varying tension. For the validation of suggested method, the current study carries out numerical simulations with a pure bending and varying tension for the internal diameter 7 inches flexible risers. It is identified that the suggested analytical model provides accurate analysis results. Moreover, it is found that the effect of varying tension gives a significant impact on the bending behavior of flexible risers by changing the slip condition of helical wires. Part I of this series of papers describes the detailed formulation method for the analytical model and with some verification examples. The suggested analytical model is expanded to the large-scale dynamic analysis in Part II for the investigation of the effect of shear deformation and varying tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号