首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper outlines a rational design procedure for bridge piers and pylons against ship collision impacts. Firstly, a set of risk acceptance criteria are proposed. This is followed by a mathematically based procedure for calculation of the probability of critical ship meeting situations near the bridge, and the probability of ship collision accidents caused by human errors as well as technical errors. This first part of the paper leads to identification of the largest striking ship, “design vessels”, a given bridge pier must withstand without structural failure in order for the bridge connection to fulfil the risk acceptance criteria. The final part of the paper is devoted to an analysis of the needed impact capacity for the bridge pylons and piers exposed to ship bow impact loads from these “design vessels”. For a number of different ship types and different tonnage merchant vessels, load – displacement relations for ship bow collisions against rigid walls are derived. Based on these comprehensive numerical results, a new empirical relation is derived which is suited for design against bow collisions. This expression for maximum bow collision forces is compared with a previously published expression for ice-strengthened ships and with existing standards for assessment of bow crushing forces. It is shown that there is need for an update of these existing standards. For design of piers and pylons against local impact pressure loads, a pressure - area relation for bulbous bow impacts is derived.  相似文献   

2.
Catamaran vessels operating at high-speed can be exposed to deck diving and bow damage and one resolution of this problem is the wave-piercer design of INCAT Tasmania. Owing to the complexity of the unsteady non-linear flow in the bow area during large wave encounter model testing has been undertaken to identify the peak dynamic slam loads on the ship structure. This paper provides experimental benchmark information relating to the wave slam loads on wave-piercing catamaran ferries. Since the time frames of transient slam loadings and whipping vibration of the entire hull in its first bending mode are similar it is important that the test model replicates the whipping response and therefore needs to be a hydro-elastic model. A 2.5 m hydro-elastic segmented catamaran model has been developed based on the 112 m INCAT Tasmania wave-piercer catamaran to establish the peak wave slamming loads acting on the full-scale vessel. Towing tank tests were performed in regular seas at a maximum full-scale operating speed of 38 knots. The model was instrumented to measure the dynamic slam loads acting on the centre bow and vertical bending moments acting in the demihulls of the catamaran model as a function of wave frequency and wave height. Peak slam loads measured on the centre bow were found to approach the total weight of the model, this being a broadly similar result to the peak loads measured at full-scale. It was found that global dimensionless heave and pitch accelerations peaked in the same range of encounter frequency as did the peak slam load.  相似文献   

3.
《Marine Structures》2002,15(4-5):365-381
The adoption of double hull system in the side hull of oil tanker has been recognized as an effective countermeasure to prevent a disastrous damage induced by collision accident which might cause cargo oil spill from a struck oil tanker. However, when considering that ocean-going vessels are increasing not only in size but also in speed, a threat of disastrous collision accident should be further mitigated even on the responsibility of striking ships.A series of crush tests using scale models of the buffer bow has been carried out. The test results were compared with those obtained by FEA simulation and a simple analysis. The performance of the buffer bow is discussed focusing on the collapse mechanism and the Pδ characteristics. Then the guidelines for the practical design of buffer bow structure are presented.  相似文献   

4.
油轮艏部结构碰撞特性研究   总被引:1,自引:0,他引:1  
在船舶碰撞中,船艏是主要作用方.船艏结构的碰撞特性是影响船-船碰撞过程中被撞船舷侧结构损伤程度的决定因素.为减少碰撞事故损失,应从碰撞的观点对船艏结构的特性进行研究,提出一种研究船艏的碰撞特性的方法及表征船艏碰撞特性的特征量,据以改进船艏设计.根据船艏结构本身的碰撞破损过程,对船艏结构碰撞力与破损深度的关系、艏部构件在碰撞过程中的损伤形态和能量耗散进行了研究,指出碰撞力曲线是船艏结构的一种固有特性.提出了碰撞力面积密度曲线的概念,它可以用于定量表达船艏结构对其它结构的破坏能力.利用有限元数值模拟方法计算了一艘4万吨船艏的碰撞损坏实例,显示了上述碰撞特征并讨论了提高碰撞数值模拟计算精度的方法.  相似文献   

5.
高强度钢缓冲型船艏研究   总被引:1,自引:0,他引:1  
在船舶碰撞事故中,一般船侧的破损程度比船艏大,从环境保护的全局意识及降低整体经济损失的角度出发,应该在保证船艏结构在能够承受常规载荷的前提下适当地减小其纵向刚度,使其在撞击船侧时导致船侧破损的可能性降低。笔者从损伤形态,碰撞力,碰撞力密度和能量吸收等方面对采用高强度钢的缓冲船艏进行研究,发现船艏结构采用高强度钢在等强度的条件下,可减少结构的板厚和船艏结构的临界压溃载荷,从而降低对被撞船舶侧结构的破坏。  相似文献   

6.
As an increasing number of ships continue to sail in heavy traffic lanes, the possibility of collision between ships has become progressively higher. Therefore, it is of great importance to rapidly and accurately analyse the response and consequences of a ship's side structure subjected to large impact loads, such as collisions from supply vessels or merchant vessels. As the raked bow is a common design that has a high possibility of impacting a ship side structure, this study proposes an analytical method based on plastic mechanism equations for the rapid prediction of the response of a ship's side structure subjected to raked bow collisions. The new method includes deformation mechanisms of the side shell plating and the stiffeners attached. The deformation mechanisms of deck plating, longitudinal girders and transverse frames are also analysed. The resistance and energy dissipation of the side structure are obtained from individual components and then integrated to assess the complete crashworthiness of the side structure of the struck ship. The analytical prediction method is verified by numerical simulation. Three typical collision scenarios are defined in the numerical simulation using the code LS_DYNA, and the results obtained by the proposed analytical method and those of the numerical simulation are compared. The results correspond well, suggesting that the proposed analytical method can improve ship crashworthiness during the design phase.  相似文献   

7.
基于整船整桥模型的船桥碰撞数值仿真   总被引:1,自引:0,他引:1  
桥梁在船舶碰撞时受到的动力载荷和响应是复杂的动力非线性问题。近代非线性有限元技术为该问题的求解提供了有效的工具。本文简述了该技术的基本原理,并基于整船整桥模型,对一艘4万吨实船与桥梁的碰撞过程进行了计算。仿真结果显示了船艏结构损坏、碰撞力演变、能量传递和桥墩内部应力变化的详细情景,讨论了船—桥碰撞的力学特征。本文演示的方法比传统的经验公式和简化解析法提供了更为精确的结果。所提供的桥墩应力状态对桥梁的设计与碰撞后的损伤评估有重要参数价值。  相似文献   

8.
砰击载荷作用下船艏结构瞬态响应研究   总被引:6,自引:0,他引:6  
砰击现象对高速舰船艏部局部结构破坏相当严重,对舰船和人员的安全构成较大威胁,然而由于砰击载荷的瞬态性和强非线性,其计算理论还很不成熟,舰船艏部结构在砰击作用下的应力响应更鲜有人研究。基于此,利用设计波下确定的砰击压力极值,结合以往试验测定的砰击压力随时间的变化关系,计算得到砰击压力的时空分布,然后将其施加在船艏精细有限元模型上,利用中心差分法进行数值计算,并对计算中一些关键参数的设置值做不同尝试,得到了较理想的艏部结构应力响应历程。  相似文献   

9.
吴伟国  王天琦  郭君  陈永备 《船舶》2016,27(5):33-43
浮动核电站驳船作为反应堆的承载结构,其耐撞性能与发生碰撞时反应堆部位的冲击环境对核电站的运行安全有十分重要的影响。文章参考俄罗斯即将投入运营的"罗蒙诺索夫"号浮动核电站的结构形式和布置情况,在ANSYS/LSDYNA中建立了浮动核电站驳船与其中的小型核反应堆及其主要管路的简化有限元模型,对驳船舷侧在与补给船球鼻首发生微能碰撞时结构的变形损伤情况进行分析,并通过计算核反应堆关键位置处的冲击谱,对碰撞过程中反应堆部位的冲击环境进行了分析,为管路相关设备的冲击设计提供参考。  相似文献   

10.
Large high-speed craft carrying passengers and vehicles produce wake waves that are different from both conventional vessels and smaller fast vessels. Wakes from these high-speed craft can cause environmental problems (such as beach change, ecological disturbance, and damage to structures and archaeological sites) and safety problems (for navigation and for users of the beach and nearshore) in confined waters. As a consequence of the higher speed, the vessel wakes also have a longer period than wakes caused by conventional ships and may lead to substantial wave action in shallow water environments. In both New Zealand and Denmark, issues relating to high-speed craft wakes were not addressed until after the vessels had begun operation, and complex coastal management issues with possibly broader application have had to be addressed. Emerging management strategies have involved regulation using speed and wave height criteria.  相似文献   

11.
基于MD Nastran的船-冰碰撞数值仿真研究   总被引:1,自引:0,他引:1  
船舶与海冰的碰撞过程十分复杂,涉及多种非线性问题。文章运用 MD Nastran对船舶艏部与冰的碰撞进行数值仿真计算,来模拟这一过程。得到了碰撞结束后,船首和海冰的损伤变形情况,船体结构的应力应变情况,以及在船—冰相互作用过程中的能量变化,应力应变变化。研究结果描述了船舶与冰碰撞的详细过程,揭示了冰载荷作用下船体结构的响应规律,可为船舶抗冰载荷设计提供参考。  相似文献   

12.
《Marine Structures》2002,15(3):285-307
This paper addresses the structural response of clam-type bow doors of Ro/Ro vessels under slamming loading conditions. The structural analysis is performed with the finite element code MSC/NASTRAN. The loading conditions were determined on the basis of towing tank tests, numerical calculation and regulations of classification societies. Slamming loads are applied statically and the FE code accounts for both material and geometrical nonlinearities. Apart from stress distributions, which are determined for different loading patterns, the results are used to calculate the forces and moments induced on the locking and securing elements, which secure the doors among themselves and the doors to the bow structure. The modelling methods reported may be used for the finite element analysis of similar structures. Such analyses of bow doors response under slamming loading could be submitted to classification societies for approval.  相似文献   

13.
In this paper, we investigate the damage to offshore platforms subjected to ship collisions. The considered scenarios are bow and stern impacts against the column of a floating platform and against the jacket legs and braces. The effect of the ship–platform interaction on the distribution of damage is studied by modeling both structures using nonlinear shell finite elements. A supply vessel of 7500-ton displacement with bulbous bow is modeled. A comprehensive numerical analysis program is conducted, and the primary findings are described herein. The collision forces from the vessel are compared with the suggested force–deformation curves in the NORSOK code. For collisions with floating platforms we particularly focus on the crushing behavior and potential penetration of the bulbous bow and stern sections into the cargo tanks or void spaces of semi-submersible platforms. For fixed jacket platforms we investigate whether jacket braces can penetrate into the ship without being subjected to significant plastic bending or local denting.Adequate treatment of the relative strength between the interacting bodies is especially relevant for impacts with high levels of available kinetic energy, for which shared energy or strength design is aimed at. Simplifying one body as rigid quickly leads to overly conservative and/or costly solutions, and is in some cases non-conservative.The numerical analysis is used to develop a novel pressure–area relation for the deformation of the bulbous bow and stern corners of the supply vessel. Procedures for strength design of the stiffened panels are discussed. Refined methods and criteria are proposed for strength design of platforms, including both floating and jacket structures. The adequacy of the NORSOK design guidance for collisions against jacket legs is evaluated. The characteristic strength of a cylindrical column is used to develop a novel criterion for the resistance to local denting from stern corners and bulbous bows.  相似文献   

14.
文章提出一种近似的解析方法评估单壳船侧结构的耐撞性。首先研究了单轴对称工字梁在横向载荷作用下结构从形成塑性铰到弦响应的力学过程,导出能量和变形的近似解析关系,然后考虑球鼻首和船侧结构的碰撞性将主要受撞区域舷侧板梁组合结构离散成为多个单轴对称工字梁,得到单壳舷侧结构碰撞过程能量吸收的近似公式,同时研究了球鼻形状以及不同碰撞位置对结构变形与能量吸收的影响。对散货船单壳舷侧结构的耐撞性用本文近似理论公式  相似文献   

15.
王翔  黄太刚  宁小倩 《船舶》2009,20(3):55-60
基于任意拉格朗日-欧拉法,描述了靠泊船与浮式码头碰撞过程中流固耦合关系。采用耦合法建立了浮式码头与靠泊船碰撞的仿真模型,真实模拟了船舶与浮式码头碰撞的过程,并与试验结果进行对比。由此可知,靠泊船碰撞对于浮式码头的运动响应、连接器所承受载荷、锚缆张力影响较为显著,流体区域也将产生较强的扰动,在实际工程应用中应加以注意。同时,也证明任意拉格朗日-欧拉法在流固耦合的研究领域优势明显。  相似文献   

16.
在撞击过程中船艏结构的典型损伤是外壳板和内加筋的褶皱,撕裂和弯曲。在以前的船舶结构的碰撞分析的简化方法或数值模拟中往往略去横向肋骨框架对船艏碰撞性能的影响。本文利用有限元数值仿真方法研究了横向肋骨框架在碰撞损坏过程中的作用,发现其对船艏结构的损伤形态、碰撞力及能量耗散有重要影响。因而是碰撞计算中不可忽略的因素。  相似文献   

17.
《Marine Structures》2000,13(3):147-187
A series of nine tests was conducted to investigate the behavior of a double hull in a variety of stranding or collision scenarios. Cones of five different nose radii were made to model accident scenarios ranging from grounding on a sharp rock to stranding on a relatively flat seabed or shoal, and collision with a sharp bulbous bow of a fast ship to collision with a large bow of a VLCC. Three sub-series were designed in which the cones pressed shell plating, main supporting members and intersections of main supporting members. The test results reveal that the nose radius and the location of penetration have a very strong influence on the behavior of a double hull. Therefore, careful definition of accident scenarios is of crucial importance to assess the strength of ship hulls in accidents, and it is necessary to base the assessment on probability of accidents. Characteristics of the response of structural members were identified and idealized as simple theoretical models. Analytical formulae were derived and discussed. Primary damage mechanisms include membrane stretching of shell panel, onset of rupture, crack propagation, folding of main supporting members, and crushing of intersections of main supporting members. The new plate punching model captures the phenomenon that the load-carrying capacity of a plate depends on the size of the striking object. The plate perforating model predicts the reduced strength of plates with cracks. It reflects the observed test phenomenon that loads do not drop to zero even after rupture occurs in shell plating. A simple analytical method was developed to calculate the global strength of a double hull. The method takes geometrical parameters of seabed rocks or bulbous bows into account, and can be used for a wide range of different accident scenarios. Calculations using this method compared satisfactorily with the test results. This method can be easily incorporated into a probability-based framework to properly assess structural performance for a variety of damage scenarios. Similar to the Wang et al. (J Ship Res 41 (1997) 241) paper on raking damage, which uses only four analytical models, this method also requires only a common calculator to carry out the calculations.  相似文献   

18.
A conceptual design framework for collision and grounding analysis is proposed to evaluate the crashworthiness of double-hull structures. This work attempts to simplify the input parameters needed for the analysis, which can be considered as a step towards a design-oriented procedure against collision and grounding. Four typical collision and grounding scenarios are considered: (1) side structure struck by a bulbous bow, (2) side structure struck by a straight bow, (3) bottom raking, (4) bottom stranding. The analyses of these scenarios are based on statistical data of striking ship dimensions, velocities, collision angles and locations, as well as seabed shapes and sizes, grounding depth and location. The evaluation of the damage extent considers the 50- and 90-percentile values from the statistics of collision and grounding accidents. The external dynamics and internal mechanics are combined to analyse systematically the ship structural damage and energy absorption under accidental loadings.  相似文献   

19.
《Marine Structures》2000,13(4-5):233-243
Loads acting on large floating structures usually consist of high-frequency and low-frequency loads. The high-frequency loads are associated with the hydroelastic behavior of the structure and excitation of the natural frequency modes. The low-frequency loads are associated with the body motion of the structure and the wave profile. In design analysis, extreme values of these loads must be combined taking into consideration the correlation between them. This paper discusses a methodology for combining the extreme loads, and proposes a simple formulation suitable for use in reliability analysis. A proposed load combination factor K was found to depend on the correlation coefficient of the two loads, the ratio of their standard deviations and the frequency content of the processes from which the loads are determined. The correlation coefficient was found to depend on the complex frequency response functions of the loads and the input wave spectrum. The paper also discusses characteristic extreme values of slightly nonlinear loads acting on large floating structures.Extreme loads may be based on a storm condition with a specified return period. Since very large floating structures are expected to have a long operational lifetime, the return period must be selected carefully. The paper discusses a method for selecting return periods based on the expected operational life of the structure and encounter probability.  相似文献   

20.
滚装船中车辆等重载荷由于固定装置失效而随船摇荡作自由滑动时,往往由于反复碰撞致使在甲板上作自由滑动的重载荷随着时间增多.由于波浪和内部滑动车辆共同作用,使滚装船的横摇加剧.这是许多滚装船发生倾覆的重要原因之一.本文对由滚装船和两辆滑动车辆组成的浮基多体系统,取滚装船的横摇角和两辆自由滑动车辆在甲板上的横向位移为此系统的三个自由度,运用多体系统动力学方法,建立了系统的动力学方程.以某型海峡滚装渡轮为例,对在两辆车自由滑动和波浪共同作用下的滚装船浮基多体系统的横摇响应和车辆位移响应进行了数值计算,得出了多个自由滑动的重载荷因相互碰撞在舷侧舱壁的约束下随着时间的延长其运动将趋于同步的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号