首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By considering the effect of the driving cycle on the energy management strategy (EMS), a fuzzy EMS based on driving cycle recognition is proposed to improve the fuel economy of a parallel hybrid electric vehicle. The EMS is composed of driving cycle recognition and a fuzzy torque distribution controller. The current driving cycle is recognized by learning vector quantization in driving cycle recognition. The torque of the engine and the motor is controlled by a fuzzy torque distribution controller based on the required torque of the hybrid powertrain and the battery state of charge. The membership functions and rules of the fuzzy torque distribution controller are optimized simultaneously by using particle swarm optimization. Based on the identification results of driving cycle recognition, the fuzzy torque distribution controller selects the corresponding membership function and rule to control the hybrid powertrain. The simulation research based on ADVISOR demonstrates that this EMS improves fuel economy more effectively than fuzzy EMS without driving cycle recognition.  相似文献   

2.
In this study, cooperative regenerative braking control of front-wheel-drive hybrid electric vehicle is proposed to recover optimal braking energy while guaranteeing the vehicle lateral stability. In front-wheel-drive hybrid electric vehicle, excessive regenerative braking for recuperation of the maximum braking energy can cause under-steer problem. This is due to the fact that the resultant lateral force on front tire saturates and starts to decrease. Therefore, cost function with constraints is newly defined to determine optimum distribution of brake torques including the regenerative brake torque for improving the braking energy recovery as well as the vehicle lateral stability. This cost function includes trade-off relation of two objectives. The physical meaning of first objective of cost function is to maximize the regenerative brake torque for improving the fuel economy and that of second objective is to increase the mechanical-friction brake torques at rear wheels rather than regenerative brake torque at front wheels for preventing front tire saturation. And weighting factor in cost function is also proposed as a function of under-steer index representing current state of the vehicle lateral motion in order to generalize the constrained optimization problem including both normal and severe cornering situation. For example, as the vehicle approaches its handling limits, adaptation of weighting factor is possible to prioritize front tire saturation over increasing the recuperation of braking energy for driver safety and vehicle lateral stability. Finally, computer simulation of closed loop driver-vehicle system based on Carsim? performed to verify the effectiveness of adaptation method in proposed controller and the vehicle performance of the proposed controller in comparison with the conventional controller for only considering the vehicle lateral stability. Simulation results indicate that the proposed controller improved the performance of braking energy recovery as well as guaranteed the vehicle lateral stability similar to the conventional controller.  相似文献   

3.
由于行星排功率分流式混合动力汽车的结构优势,双行星排功率分流式混合动力汽车已经成为各机构的研究重点。由纯电动模式到混合驱动模式切换的过程中存在发动机起动和发动机转矩引入,而发动机转矩瞬态响应存在迟滞,导致切换过程中动力系统的输出转矩会有较大波动。为减小波动,降低模式切换过程中的动态冲击度,本文中提出补偿滑模控制方法,对双行星排功率分流式混合动力汽车模式切换进行协调控制。首先,建立整车动力学模型,对切换过程每个模式进行分析;之后,针对发动机拖转阶段和混合驱动阶段分别采用补偿控制和基于固定边界层的自适应滑模控制,并对滑模控制进行稳定性分析;最后,结合Matlab/Simulink软件平台进行仿真验证。仿真结果表明,补偿滑模协调控制策略能够有效地减小从纯电动到混合驱动模式切换过程中的转矩波动和冲击度。  相似文献   

4.
When braking on wet roads, Antilock Braking System (ABS) control can be triggered because the available brake torque is not sufficient. When the ABS system is active, for a hybrid electric vehicle, the regenerative brake is switched off to safeguard the normal ABS function. When the ABS control is terminated, it would be favorable to reactivate the regenerative brake. However, recurring cycles from ABS to motor regenerative braking could occur. This condition is felt to be unpleasant by the driver and has adverse effects on driving stability. In this paper, a novel hybrid antiskid braking system using fuzzy logic is proposed for a hybrid electric vehicle that has a regenerative braking system operatively connected to an electric traction motor and a separate hydraulic braking system. This control strategy and the method for coordination between regenerative and hydraulic braking are developed. The motor regenerative braking controller is designed. Control of regenerative and hydraulic braking force distribution is investigated. The simulation and experimental results show that vehicle braking performance and fuel economy can be improved and the proposed control strategy and method are effective and robust.  相似文献   

5.
随着新能源汽车的深入研发,电机驱动控制技术的要求也越来越高,文章主要针对多轴增程式混合动力汽车驱动控制策略进行研究,提出电机驱动控制器设计架构以及电子差速控制策略,通过仿真以及实车测试对文章所提出的驱动控制策略进行验证。  相似文献   

6.
为了准确获取分布式驱动电动汽车状态参数信息,满足车辆稳定性控制系统的需求,提出一种基于蚁狮算法的无迹卡尔曼滤波状态参数估计器。针对无迹卡尔曼滤波(UKF)过程中噪声协方差矩阵的不确定性,采用蚁狮优化算法(ALO)对其进行寻优,并引入奇异值分解(SVD)的方法来维持噪声协方差矩阵的正定性,此外,基于指数加权最小二乘法对车辆侧偏刚度进行辨识并将其作为状态参数估计器输入。基于MATLAB/Simulink和CarSim联合仿真平台,建立分布式驱动电动汽车参数估计模型,分别进行双移线工况和正弦迟滞工况仿真,并基于A&D5435快速原型开发平台进行双移线工况实车试验。仿真与试验结果表明:相比于SVDUKF算法估计结果,双移线仿真工况下,基于ALO-SVDUKF算法估计得到的质心侧偏角和横摆角速度的均方根误差分别降低了55.7%、30.7%,正弦迟滞仿真工况下,均方根误差分别降低了58.1%、85.1%,且在车辆处于极限失稳状态时仍能维持较好的估计效果;双移线试验工况下,横摆角速度的估计值与实际测量值之间的均方根误差仅为0.938 4(°)·s-1;提出的基于ALO-SVDUKF算法的分布式驱动电动汽车状态参数估计器能够有效提高质心侧偏角和横摆角速度的估计精度,可为车辆稳定性控制提供精确的状态信息。  相似文献   

7.
针对前轮独立驱动电动汽车,研究一种基于小波控制器的驱动稳定性控制系统。为提高车辆对开路面的行驶稳定性,根据驱动轮等转矩分配控制策略,提出基于神经网络PID的驱动轮滑移率相近为目标控制策略。针对矢量控制中的电流控制,提出基于离散小波变换的电流控制器。通过CarSim/Simulink建立前轮独立驱动电动汽车联合仿真平台,进行不同工况整车性能仿真与分析,并基于A&D5435快速原型开发平台进行实车试验。仿真与试验结果表明:基于小波控制器的驱动控制系统不仅提高了车辆对开路面行驶的稳定性,而且具有更平滑、更快速的转矩响应;对开路面工况下,提出的控制策略左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.43%和3.56%;等转矩分配控制策略下,左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.86%和3.25%,表明了试验与仿真的一致性;对开路面仿真工况下,相比于驱动轮等转矩分配控制策略,基于神经网络PID的驱动轮滑移率相近为目标控制策略的车辆峰值质心侧偏角降低了79.57%,侧向跑偏距离降低了73.39%。  相似文献   

8.
A controller for a diesel hybrid electric vehicle based on a V-cycle development approach is investigated in this paper. The hardware and infra program of the Hybrid Control Unit (HCU) are discussed in detail. The hardware system is designed based on circuit simulation; while the infra system is written with assemble language. Time sharing mode, buffer sharing mode and multi-task schedule method are used to ensure real-time communication in the infra program design. Based on multi-thread technology, hardware in loop test system is also designed. The hardware in loop and bench tests show that the controller could meet the requirements of the hybrid electric vehicle (HEV) and communicate in real-time. Circuit simulation, HCU, infra program and hardware in loop test form the effective V-cycle development platform to design a hardware system for a diesel HEV controller.  相似文献   

9.
ADVISOR混合动力电动汽车仿真系统的二次开发及应用   总被引:9,自引:1,他引:9  
在研究与掌握ADVISOR车辆仿真系统结构组成的基础上,对该系统进行了二次开发,建立了该仿真系统不具备的某特定车型的混合动力系统仿真模型及其控制器模型。并针对特殊的循环行驶工况,利用该模型进行了燃油经济性能的仿真和分析。  相似文献   

10.
王姝  赵轩  余强  余曼 《中国公路学报》2022,35(1):334-349
为了使双电机驱动电动车在车辆稳定性控制过程中能够精确解读驾驶意图,使车辆实际行驶状态与驾驶意图期望的车辆行驶状态尽可能相符合,提出一种基于驾驶人意图辨识的稳定性控制策略.利用基于支持向量机递归特征消除(SVM-RFE)得到的特征参数构建基于长短期记忆(LSTM)模型的驾驶人转向意图辨识模型;基于转向意图识别结果,以方向...  相似文献   

11.
This research concerns the design of a powertrain system for a plug-in parallel diesel hybrid electric bus equipped with a continuously variable transmission (CVT) and presents a new design paradigm for the plug-in hybrid electric bus (HEB). The criteria and method for selecting and sizing powertrain components equipped in the plug-in HEB are presented. The plug-in HEB is designed to overcome the vulnerable limitations of driving range and performance of a purely electric vehicle (EV), and it is also designed to improve the fuel economy and exhaust emissions of conventional buses and conventional HEBs. Optimization of the control strategy for the complicated and interconnected propulsion system in the plug-in parallel HEB is one of the most significant factors for achieving higher fuel economy and lower exhaust emissions in the hybrid electric vehicle (HEV). In this research, the proposed control strategy was simulated to prove its validity using the ADVISOR (advanced vehicle simulator) analysis simulation tool.  相似文献   

12.
An energy management control strategy for a parallel hybrid electric vehicle based on the extremum-seeking method for splitting torque between the internal combustion engine and electric motor is proposed in this paper. The control strategy has two levels of operation: the upper and lower levels. The upper level decision-making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum-seeking algorithm that searches for maximum drivetrain efficiency. A dynamic programming solution is also obtained and used to form a benchmark for performance evaluation of the proposed method based on extremum seeking. Detailed simulations using a realistic model are presented to illustrate the effectiveness of the methodology.  相似文献   

13.
This paper mainly focuses on the accurate estimation of the torque transferred through the engine clutch installed between the engine and the drive motor in parallel-type hybrid electric vehicles. The estimation of the engine clutch torque primarily relies on the forward-direction observer which uses the nominal engine net torque information. To overcome the limitation of using the nominal engine torque information that it may not be accurate during the transient states or due to the influence of external disturbance such as the road condition and wind, the forward-direction observer is supplemented by the use of reverse-direction observer which uses the driveline model and wheel speed measurements. In addition, the drive motor torque information is used to calibrate the nominal engine torque during the idle charging state, so that the driveline characteristic unique to parallel-type hybrid electric vehicle can be utilized to increase the estimation accuracy. Finally, the estimation performance of the designed observer is tested via simulation and experiments based on a real vehicle.  相似文献   

14.
In this paper, a novel direct yaw control method based on driver operation intention for stability control of a distributed drive electric vehicle is proposed. It was discovered that the vehicle loses its stability easily under an emergency steering alignment (EA) problem. An emergent control algorithm is proposed to improve vehicle stability under such a condition. A driver operation intention recognition module is developed to identify the driving conditions. When the vehicle enters into an EA condition, the module can quickly identify it and transfer the control method from normal direct yaw control to emergency control. Two control algorithms are designed. The emergency control algorithm is applied to an EA condition while the adaptive control algorithm is applied to other conditions except the EA condition. Both simulation results and real vehicle results show that: The driver module can accurately identify driving conditions based on driver operation intention. When the vehicle enters into EA condition, the emergent control algorithm can intervene quickly, and it has proven to outperform normal direct yaw control for better stabilization of vehicles.  相似文献   

15.
This paper proposes a design and implementation of an auxiliary mode, hybrid electric scooter (HES) by means of more cost-effective way for improving scooter’s performance and efficiency. The HES is built in a parallel hybrid configuration with a 24V 370W auxiliary power electric motor, a 24V 20AH battery, and an electronically controlled fuel injection internal combustion engine (ICE) scooter. In contrast to hybrid electric vehicles (HEVs), the issues concerning cost, volume, and reliability are even more rigorous when developing hybrid electric scooters (HESs). Therefore, the drive topology and control strategy used in HEV cannot be applied to HES directly. In order to hasten the developing phase and achieve the parametric tune-up of the HES component, a dynamic simulation model for the HES is developed here. Because the powertrain system is complex and nonlinear in nature, the simulation model utilizes mathematical models in tandem with accumulated experimental data. The method about the mathematical model construction, analysis and simulation of the hybrid powertrain used in a scooter are fully described. The efficacy of the model was verified experimentally on a scooter chassis dynamometer and the performance of the proposed hybrid powertrain is studied using the developed model under a representative urban driving cycle. Finally, Simulation and experimental results confirm the feasibility and prosperity of the proposed hybrid HES and indicate that the designed hybrid system can improve the fuel consumption rate up to 15% compared with the original scooter.  相似文献   

16.
成钦  李军营 《天津汽车》2013,(11):19-22
为对无刷直流电机实现开/闭环两部分控制,文章介绍了基于Freescale 9S12XS128芯片实现对电动汽车无刷直流电机控制器的设计。程序的编译采用了Codewarrior软件,闭环控制即在车上安装了振荡传感器,可根据不同的振荡程度自行调整无刷电机的转速。开环控制是外设有滑动变阻器,用户可以通过调整滑动变阻器来控制输入电压信号的大小,进而调整PWM的输出来控制电机的转速。此款控制器实现了电机的开/闭环控制,还设计有显屏,可显示速度、电流、电压及消耗的电量,且预留有无线输出口并配有LabVIEW上位机软件可用于调试电机和采集数据。  相似文献   

17.
To solve the problem of the existing fault-tolerant control system of four-wheel independent drive (4WID) electric vehicles (EV), which relies on fault diagnosis information and has limited response to failure modes, a modelindependent self-tuning fault-tolerant control method is proposed. The method applies model-independent adaptive control theory for the self-tuning active fault-tolerant control of a vehicle system. With the nonlinear properties of the adaptive control, the complex and nonlinear issues of a vehicle system model can be solved. Besides, using the online parameter identification properties, the requirement of accurate diagnosis information is relaxed. No detailed model is required for the controller, thereby simplifying the development of the controller. The system robustness is improved by the error based method, and the error convergence and input-output bounds are proved via stability analysis. The simulation and experimental results demonstrate that the proposed fault-tolerant control method can improve the vehicle safety and enhance the longitudinal and lateral tracking ability under different failure conditions.  相似文献   

18.
A four-wheel-independent-steering (4WIS) electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. The fast terminal sliding mode controller (FTSMC) is designed for the SBW system to suppress external disturbances. Taking unstructured and structured uncertainties into consideration, a robust controller is designed for the 4WIS EV utilizing μ synthesis approach and the controller order reduction is implemented based on Hankel-Norm approximation. Since sideslip angle is the feedback signal of robust controller and it is hard to measure, the extended Kalman filter (EKF) is employed to estimate sideslip angle. To evaluate the vehicle performance with the designed control system, step and sinusoidal steering maneuvers are simulated and analyzed. Simulation results show that the designed control system have good tracking ability, strong robust stability and good robust performance to improve vehicle stability and handing performance.  相似文献   

19.
分析了混合动力汽车再生制动系统的特点及其应用前景,提出了一种基于并行控制的再生制动控制策略;针对某款并联式混合动力轿车,采用并行再生制动控制策略,进行了制动控制器的软硬件开发;搭建了硬件在环仿真试验系统对控制器进行了硬件在环仿真验证,并对控制器进行了实车测功机试验和实车道路试验。试验结果表明:该控制器运行稳定、可靠,整车平均制动能量回收效率达15%左右,显著提高了汽车的能源利用效率。  相似文献   

20.
This research is the first to develop a design for a powertain system of a plug-in parallel diesel hybrid electric bus equipped with a continuously variable transmission (CVT) and presents a new design paradigm of the plug-in hybrid electric bus (HEB). The criteria and method for selecting and sizing powertrain components equipped in the plug-in HEB are presented. The plug-in HEB is designed to overcome the vulnerable limitations of driving range and performance of a purely electric vehicle (EV) and to improve fuel economy and exhaust emissions of conventional bus and conventional HEBs. The control strategy of the complicated connected propulsion system in the plug-in parallel HEB is one of the most significant factors in achieving higher fuel economy and lower exhaust emissions of the HEV. In this research, a new optimal control strategy concept is proposed against existing rule-based control strategies. The optimal powertrain control strategy is obtained through two steps of optimizations: tradeoff optimization for emission control and energy flow optimization based on the instantaneous optimization technique. The proposed powertrain control strategy has the flexibility to adapt to battery SOC, exhaust emission amount, classified driving pattern, driving condition, and engine temperature. The objective of the optimal control strategy is to optimize the fuel consumption, electricity use, and exhaust emissions proper to the performance targets. The proposed control strategy was simulated to prove its validity by using analysis simulation tool ADVISOR (advanced vehicle simulator).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号