首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
运用MATLAB软件结合多刚体系统动理学和数值计算的方法给出了麦弗逊独立悬架导向机构运动特性参数的计算方法,并对导向机构结构参数进行了优化设计。结果表明该算法可行有效;优化后,悬架系统的运动学特性得到了改善。  相似文献   

2.
本文以多刚体系统动力学为理论基础,应用多体运动学与动力学仿真软件ADAMS 中的Car专业模块建立了麦弗逊悬架多刚体模型。在对该悬架模型进行了两侧车轮同向跳动的仿真分析后,研究了前束角(Toe Angle)、车轮外倾角(Camber Angle)、主销后倾角(Caster Angle)、主销内倾角(Kingpin Inclination Angle)及车轮转向角(Steer Angle)五个悬架运动特性参数,同时研究了这五个运动特性参数对汽车的稳态响应特性、直线行驶的稳定性、操纵稳定性等众多性能的影响。此外,以改善悬架的性能为目标,从ADAMS/Car模块中导入ADAMS/Insight模块,对麦弗逊悬架五个运动特性参数进行了优化。最后,对优化前后的悬架运动特性参数曲线进行了比较,并从比较中得到较好的运动特性参数,从而对悬架进行了优化。  相似文献   

3.
利用多体动力学理论,在虚拟样机仿真软件ADAMS/Car中建立了传统型麦弗逊悬架及控制臂改进型麦弗逊悬架模型.通过运动学仿真计算可知、在车轮上、下跳动过程中,改进型麦弗逊悬架使车轮外倾角、车轮前束、主销内倾角,车轮转角、抬头量和点头量的变化范围更小,主销后倾角变化范围稍大,更有利于操纵稳定;与传统型麦弗逊悬架相比,控制臂改进型麦弗逊悬架运动学性能有明显提高.  相似文献   

4.
运用ADAMS仿真软件平台,在建立车辆麦弗逊悬架和双横臂悬架系统模型的基础上,进行了双轮同向跳动仿真试验,通过对两种悬架系统车轮定位、侧倾特性、行驶稳定性等不同特征参数的差异性进行对比分析,获得了两种悬架系统在同等条件下各自的优缺点,并对相关系统前束值所存在的问题进行优化,探索了提高悬架性能的途径.  相似文献   

5.
李尊远  李海波 《北京汽车》2008,(1):12-13,42
为了解决前轮磨损的问题,文中以多刚体系统动力学理论为基础,应用机械系统动力学仿真软件ADAMS/View建立麦弗逊悬架模型,并应用ADAMS/Insight模块进行运动分析并对悬架的结构进行优化,得出优化的悬架布置方案,从而减小了轮胎的磨损。  相似文献   

6.
麦弗逊悬架转向机构优化设计   总被引:4,自引:0,他引:4  
运用多刚体系统动力学中 R- W方法进行机构运动计算 ,编制了汽车麦弗逊悬架转向机构优化设计通用程序。优化模型中把麦弗逊悬架系统和转向机构作为一个整体系统进行运动分析 ,考虑了车轮跳动对转向误差的影响 ,并根据转向过程中的实际要求计入两个权重函数 ,使转向误差分布更合理  相似文献   

7.
林逸  陈欣 《中国公路学报》2000,13(3):120-122,126
介绍了汽车独立悬架多体弹性运动学分析的一种特殊处理方法,以提高分析结果的精度。结合一个悬架空间问题的应用实例给出了一些计算结果以说明分析方法的实用性和有效性。  相似文献   

8.
麦弗逊悬架侧载螺旋弹簧优化设计   总被引:1,自引:0,他引:1  
柳江  喻凡  楼乐明 《汽车工程》2006,28(8):743-746
以某轿车为例,建立了麦弗逊悬架多体动力学模型,将减振器侧向力仿真结果作为侧载弹簧设计目标,应用有限元方法进行结构优化设计,并进行了试验验证。研究结果表明,采用优化设计的侧载螺旋弹簧后可显著降低悬架侧载,为悬架系统及其元件的优化提供了一种参考方法。  相似文献   

9.
汽车悬架系统为一多体系统,部件之间的运动关系十分复杂,传统的人工计算很难将悬架的各种特性表述清楚。以多刚体系统动力学理论为基础,应用机械系统动力学仿真分析软件ADAMS中的Car专业模块建立该车的麦弗逊式前悬架多刚体模型,并采用ADAMS/Insight模块进行参数分析,同时进一步进行悬架布置的优化,在一定程度上提高了整车的行驶平顺性和操纵稳定性性能。  相似文献   

10.
孙蓓蓓  许志华  孙庆鸿 《汽车工程》2006,28(10):922-925,955
以AD250铰接式自卸车为应用实例,在建立整车刚柔耦合多体动力学模型的基础上,提出把悬架传力构件作为柔性体置于整车模型中,同时采用模态综合法计算悬架的动应力。指出了AD250铰接式自卸车悬架各构件的应力最大部位及发生时刻并评价了其动强度,为进一步的结构优化和疲劳分析奠定了基础。  相似文献   

11.
介绍了在Pro/Mechanism中建立液压伺服提前器多体动力学仿真模型的技术,并对仿真结果进行分析。结果表明,多体动力学仿真技术可以帮助工程技术人员提高产品的设计质量,降低开发成本,缩短开发周期。  相似文献   

12.
McPherson suspension modelling poses a challenging problem due to its nonlinear asymmetric behaviour. The paper proposes a planar quarter-car analytical model that not only considers vertical motion of the sprung mass (chassis) but also: (i) rotation and translation for the unsprung mass (wheel assembly), (ii) wheel mass and its inertia moment about the longitudinal axis, and (iii) tyre damping and lateral deflection. This kinematic–dynamic model offers a solution to two important shortcomings of the conventional quarter-car model: it accounts for geometry and for tyre modelling. The paper offers a systematic development of the planar model as well as the complete set of mathematical equations. This analytical model can be suitable for fast computation in hardware-in-the-loop applications. Furthermore, a reproducible Simulink implementation is given. The model has been compared with a realistic Adams/View simulation to analyse dynamic behaviour for the jounce and rebound motion of the wheel and two relevant kinematic parameters: camber angle and track width variation.  相似文献   

13.
The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heavy vehicle integrating either unconnected or coupled suspension, three dimensionless measures of suspension properties are defined and analysed—namely the pitch margin (PM), pitch stiffness ratio (PSR), and coupled pitch stiffness ratio (CPSR)—for different unconnected suspension tunings and load conditions. Dynamic responses of the vehicle with three different load conditions and five different tunings of the unconnected suspension are obtained under excitations arising from three different random road roughness conditions and a wide range of driving speeds, and braking manoeuvres. The responses are evaluated in terms of performance measures related to vertical and pitch ride, dynamic tyre load, suspension travel, and pitch-attitude control characteristics of the vehicle. Fundamental relationships between the vehicle responses and the proposed suspension measures (PM, PSR, and CPSR) are established, based on which some basic suspension tuning rules for heavy vehicles with unconnected suspensions are also proposed.  相似文献   

14.
利用多体动力学仿真软件Adams/car对某低速自卸车的前悬架进行详细的模型建立,并且对该模型进行仿真。利用后处理模块得出前轮定位参数的变化曲线,通过观察分析悬架前轮定位参数的变化趋势,给出了造成试验车过多转向、直行失稳等问题的原因,为进一步对悬架定位参数进行优化奠定了基础。  相似文献   

15.
A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.  相似文献   

16.
简要地介绍了键合图基本原理,建立了汽车八自由度振动系统的键合图模型,推导出状态方程。应用现代控制论方法,指出了应用键合图理论对悬架参数进行优化的方便性与实用性。  相似文献   

17.
This paper starts with a classical mechanism synthesis problem and focuses on the concept design and dynamics analysis of an independent suspension that has invariable orientation parameters when the wheel moves up (jounces) and down (rebounds). The paper first proposes a symmetric redundant constraint suspension structure that has invariable orientation parameters. And then, it analyses the mechanism mobility with the reciprocal screw theory, after which it establishes the displacement constraint equations of the suspension. This type of suspension has all the advantages of the sliding pillar suspension but overcomes its disadvantage of over-wearing. Through differentiating the constraint equations with respect to time, it obtains the kinematics relationship and builds up the dynamics equations of the suspension via Newton–Euler method. Numerical simulations indicate that this kind of independent suspensions should not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of the wheels. Therefore, this kind of independent suspensions can obviously improve the ride and handling properties of advanced automobiles.  相似文献   

18.
Rail vehicles are today increasingly equipped with active suspension systems for ride comfort purposes. In this paper, it is studied whether these often powerful systems also can be used to improve crosswind stability. A fast rail vehicle equipped with active secondary suspension for ride comfort purposes is exposed to crosswind loads during curve negotiation. For high crosswind loads, the active secondary suspension is used to reduce the impact of crosswind on the vehicle. The control input is taken from the primary vertical suspension deflection. Three different control cases are studied and compared with the only comfort-oriented active secondary suspension and a passive secondary suspension. The application of active secondary suspension resulted in significantly improved crosswind stability.  相似文献   

19.
This paper presents a design methodology for the suspension system of a novel aerodynamically efficient motorcycle. Since the machine’s layout and the rider’s seating position are unconventional, several aspects of the machine design, including the suspension, must be reviewed afresh. The design process is based on matrix inequalities that are used to optimise a road-grip objective function – others could be used equally well. The design problem is cast as the minimisation of an H 2 cost with passivity constraints imposed on the suspension transference. The resulting bilinear matrix inequality problem is solved using a locally optimal iterative algorithm. The matrix inequality-type characterisation of positive real functions permits the optimisation of the suspension system over an entire class of passive admittances. Torsional springs, dampers and inerters are then used to construct networks corresponding to the optimal (positive real) admittances. Networks of first, second, third and fourth orders are considered, and an argument based on the compromise between complexity and improved grip is made for the most suitable suspension configuration. Finally, the effects of improved road grip on the stability of the vehicle’s lateral dynamics are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号