首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:为研究市域快线减振垫浮置板轨道过渡段的合理设置,根据车辆-轨道耦合动力学原理,建立车辆-过渡段无砟轨道垂向耦合动力学计算模型,计算CRH6型动车以160 km/h的速度经过双块式无砟轨道-橡胶减振垫浮置板轨道过渡段时所引起的轮轨系统动力响应,并选取钢轨挠度变化率作为评价指标来衡量过渡段设置的合理性,详细分析不...  相似文献   

2.
为了更好地进行聚氨酯减振浮置板轨道结构的选型设计,建立车辆-轨道系统动力分析模型,研究轨道板厚度、扣件刚度、减振垫刚度对聚氨酯减振浮置板轨道结构动力响应的影响。结果表明:轨道板厚度增大会导致钢轨加速度相应增大,而钢轨位移、轨道板加速度、基底加速度显著减小;扣件刚度减小会导致钢轨垂向位移增大,而钢轨、轨道板、基底加速度不同程度减小;减振垫刚度增大会导致钢轨垂向位移、垂向加速度减小,而轨道板、基底垂向加速度平稳增大。结合工程实际,建议轨道板厚度取260~300 mm,扣件刚度取20~40 kN/mm,减振垫刚度取0.02~0.03 MPa/mm。  相似文献   

3.
以满足设计时速160 km的准高速地铁为研究对象,基于刚柔耦合动力学理论,建立地铁车辆多刚体模型和轨道-浮置板柔性体模型,并通过轮轨力算法将其耦合为车-轨-浮置板动力系统。从时域和频域对该系统进行动力响应分析,2个角度对比研究车辆运行速度和轨道结构参数对其振动响应的影响。研究结果表明:地铁车辆悬挂系统和浮置板轨道减振系统可有效抑制轮轨冲击力和振动的传播;时速160 km准高速地铁相较于时速80 km地铁,轮轨振动加速度及轮轨力增加1.5倍左右,车体振动加速度和传递到基底的力虽有小幅增加但变化不明显;减小轨道系统扣件刚度可有效降低地铁运行速度对轮轨垂向力、轮轨高频振动等产生的不利影响;隔振器刚度对传递到基底的作用力影响较为明显,其刚度越大传递到基底的动作用力越大,对车体和钢轨振动响应的影响相对较小。  相似文献   

4.
以我国地铁常用浮置板板下胶垫为研究对象,测取-40~30℃的温度环境中板下胶垫的静刚度。建立车辆-浮置板轨道垂向耦合动力学模型,分析板下胶垫的温度敏感性以及不同温度环境下板下胶垫温变刚度对轮轨系统动力响应特征。研究结果表明:板下胶垫静刚度在工作荷载范围内为常量,不具有幅变非线性特征。板下胶垫的线性静刚度随着温度的降低而急剧升高,增幅高达224%以上。板下胶垫的温变刚度主要影响橡胶隔振垫浮置板轨道的浮置板位移,浮置板垂向最大位移变化率可达到204%。其次,板下胶垫的温变刚度对钢轨的垂向位移也会产生一定的影响,钢轨垂向最大位移变化率为31%。板下胶垫的温变刚度对轮轨之间作用力产生的影响较小。  相似文献   

5.
目前,国内部分地铁设计速度已达120 km/h,有必要针对该速度条件下的减振垫浮置板动力特性以及减振垫刚度取值等问题展开专门研究。基于有限元软件,建立车辆-轨道-隧道耦合动力学模型,可对120 km/h速度条件下地铁车辆、钢轨、减振垫浮置板,以及隧道结构等细部结构的动力学特性进行详细的研究。经计算和检算可知,在减振垫浮置板上运行120 km/h速度的地铁A型车,其各项动力学指标均满足动力学检算标准;同时计算结果表明,减振垫面刚度宜取0.01~0.02 N/mm3.  相似文献   

6.
以直线电机地铁系统的特点和动力学特征为依据,通过建立直线电机地铁系统横、垂向车辆-轨道耦合动力学仿真模型,计算了不同的轨道结构形式(长枕埋入式与板式)和不同板下支承刚度和阻尼情形下,直线电机车辆与轨道结构的动力响应,并进行了对比分析.结果表明,长枕埋入式轨道结构的车体垂向加速度略大于板式轨道,而板式轨道的钢轨横向加速度以及钢轨垂向位移则要略大于长枕埋入式,板下阻尼值的增大有利于轨道板减振,板下刚度对轮轨力、钢轨位移和电机气隙影响较小,当板下刚度增加时,轨道板的位移值变小但轨道板的加速度值变大.  相似文献   

7.
以地铁橡胶浮置板轨道为研究对象,基于隔振垫超弹性本构建立地铁车辆-橡胶浮置板轨道-隧道耦合动力分析模型,计算橡胶浮置板轨道的动力响应及减振效果。结果表明:隔振垫超弹性本构模型计算的轨道结构及隧道壁动力响应均更接近实测数据;不同隔振垫刚度工况下,超弹性本构模型计算得到的轨道结构位移均小于线弹性本构模型,钢轨和轨道板位移峰值分别相差10%和40%左右;超弹性本构模型计算得到的轨道板加速度峰值较小而基底加速度峰值较大,且随隔振垫刚度增加,2种模型计算的轨道板振动差异减小、基底振动差异显著增大,常用隔振垫静刚度范围(0.019~0.100 N·mm-3)内超弹性本构模型与线弹性本构模型计算的基底加速度峰值之比最大为2.46,而采用线弹性本构模型将低估橡胶浮置板轨道基底振动;超弹性本构模型计算得到的轨道板振动及基底高频振动较小,而基底低频振动较大,传递损失小,而采用线弹性本构模型将高估地铁振动特征频段(50~80 Hz)的减振作用,放大轨道固有频率附近(16~31.5 Hz)振动。  相似文献   

8.
为了研究隔离式减振垫垂向刚度对U型梁桥结构振动及噪声的影响,采用多体动力学和有限元联合仿真的方法建立基于Timoshenko梁模型的车辆-轨道-桥梁刚柔耦合动力学模型,并将理论计算结果与以往文献对比,验证了模型的有效性.基于该模型计算了减振垫垂向刚度不同情况下的桥梁系统振动及噪声响应.结果表明:随着隔离式减振垫垂向刚度...  相似文献   

9.
部分新建城市轨道交通线路设计时速已达160km,特殊减振地段采用钢弹簧浮置板轨道.为深入研究浮置板轨道的动力学特性,建立列车-轨道-隧道-土体一体化振动分析模型,分析各种行车速度及隔振器刚度条件下车辆通过钢弹簧浮置板轨道时轨道结构的动力响应及减振特性,并计算车辆行驶的安全性、舒适度等相关指标.计算结果表明:(1)列车运...  相似文献   

10.
针对城市轨道交通常规减振型轨道结构在低频域(30Hz)范围内因共振放大低频振动的现象,提出一种被动式动力减振轨道结构。基于扩展定点理论和有限单元法,利用最优同调和最优阻尼条件,得到抑制浮置板轨道1阶模态振动的最优刚度和阻尼。以短型钢弹簧浮置板轨道为例,建立车辆-被动式动力减振浮置板轨道耦合动力学模型。计算结果表明:被动式动力减振浮置板可有效抑制13 Hz(短型浮置板1阶固有频率)附近的振动加速度,质量比为0.2时被动式动力减振浮置板使13Hz处振动降低12dB;被动式动力减振浮置板使弹簧支点反力在13Hz附近的峰值明显降低,有效降低传递至周围建筑物的低频振动;被动式动力减振浮置板轨道结构的质量比越大,其对1阶模态振动的减振效果越好。  相似文献   

11.
以北京地铁6号线车辆为样本,研究了浮置板轨道对于车辆轨道耦合动力学模型的影响。建模时将浮置板轨道考虑成柔性体,用有限元实体单元建模,并利用模态叠加法进行求解。仿真后得出如下结论:与轨道不平顺引起的冲击相比,采用浮置板轨道后所产生的枕跨冲击、过渡冲击、轨道板冲击并不明显。车辆在浮置板轨道上行驶时,其竖向悬挂系统能够较好地降低轮轨的冲击力;轨道垫板刚度的主要影响是频率在60~150 Hz范围内的振动,对低频振动影响较小。随着轨道垫板刚度的变大,轮轨垂向力和轮重减载率逐渐变大,但其对轮轴横向力和脱轨系数影响很小,对车体振动几乎没有影响。轨道垫板刚度的主要影响是频率在10 Hz左右的轨道板的振动,对浮置板钢弹簧支承力的影响较小,即对路基的减振效果影响较小。  相似文献   

12.
研究目的:深圳地铁6号线是首条全高架采用"U型梁+减振垫浮置板轨道"系统的地铁快线,为检验是否存在系统共振,考察行车安全性指标和桥梁结构振动情况,本文通过建立车-轨-桥耦合动力学模型,对系统固有频率以及车辆、轨道、桥梁动力特性进行研究,以期指导深圳地铁6号线桥梁、轨道结构设计实践。研究结论:(1) U型梁与减振垫浮置板轨道自振频率相差较大,二者发生低阶共振的可能性较小;(2) U型梁上采用减振垫浮置板轨道以后,行车安全性指标、轨道及桥梁动力学指标均满足规范要求;(3)减振垫浮置板轨道系统可降低桥梁结构振动5~8 d B;(4)本文所采用的系统动力检算方法,既验证了"U型梁+减振垫浮置板轨道"设计方案的合理性,同时也对国内地铁高架线减振设计具有一定的指导意义。  相似文献   

13.
郭强  王平  徐井芒  胡辰阳 《铁道建筑》2020,(3):123-126,140
为了研究地铁曲线段不同减振轨道的轮轨动态相互作用,通过现场实测数据对比分析了橡胶隔振垫道床轨道、钢弹簧浮置板道床轨道、梯形轨枕轨道、单趾弹条扣件轨道4种减振轨道结构的轮轨力、钢轨动态位移,以及对应断面处隧道壁的垂向振动加速度。分析结果表明:单趾弹条扣件轨道振动相对较大,钢弹簧浮置板道床振动相对较小;4种减振轨道对应的轮轨垂向力、横向力、脱轨系数均满足列车安全运营要求;钢弹簧浮置板道床轨道的钢轨动态位移平均值较大,但小于安全限值。  相似文献   

14.
轨道过渡段动力特性的有限元分析   总被引:2,自引:0,他引:2  
运用有限元方法和Lagrange方程,建立列车-轨道-路基耦合系统动力分析模型,提出车辆单元和轨道单元,推导2种单元的刚度矩阵、质量矩阵和阻尼矩阵,并用Matlab编制了计算程序.利用文中提出的车辆单元和轨道单元,考虑列车速度、路基刚度以及过渡段轨道不平顺和路基刚度综合影响因素对轨道过渡段动力特性进行分析.分析表明:过渡段路基刚度突变对钢轨垂向加速度和轮轨作用力均有影响,其影响随着列车速度的提高而增大;过渡段轨道不平顺和路基刚度变化2种因素同时存在对钢轨垂向加速度和轮轨作用力的影响非常明显,其峰值远大于1种影响因素引起的动力响应;列车速度、路基刚度以及过渡段轨道不平顺和路基刚度综合影响因素对车体垂向加速度的影响甚微,其原因是车体附有的一、二系弹簧阻尼系统起到了很好的减振作用.  相似文献   

15.
橡胶浮置板无砟轨道过渡段动力学性能分析   总被引:4,自引:2,他引:2  
无砟轨道过渡段刚度不连续,导致车辆和轨道结构系统动力学响应差别很大。针对这种情况,采用车辆—轨道系统动力学耦合模型分析方法,研究了设置橡胶浮置板无砟轨道过渡段对地铁车辆和轨道结构的动力学响应。算例结果表明,橡胶浮置板轨道过渡段的设置对地铁车辆和轨道系统产生较好的低动力响应,且使得轨面动位移变化平缓,同时降低了车体的振动加速度。  相似文献   

16.
浮置板轨道结构是目前降低地铁振动和噪声最有效的减振结构。基于车辆轨道耦合动力学原理建立浮置板轨道的动力学分析模型,研究车辆运行速度、支座动刚度的变化对预制浮置短板轨道系统动力学参数的影响,并通过现场测试进行了验证。  相似文献   

17.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

18.
为指导制定我国浮置板轨道减振垫设计规范,探究德国浮置板轨道减振垫规范(DIN 45673-7:2010)以及我国浮置板轨道减振垫暂行技术条件(TJ/GW 121-2014)的科学性。以聚氨酯与橡胶减振垫为研究对象,依据上述规范开展室内测试,建立车辆-轨道刚柔耦合模型与轨道-隧道-土层耦合有限元模型,开展减振垫单一预压、单一频率减振效果评价方法的影响研究,探讨规范中减振垫浮置板轨道减振效果评价的合理性。研究结果表明:预压荷载大小(即列车轴重)与有载条件下浮置板轨道固有频率(即考虑轮轴参振的浮置板轨道系统固有频率)是控制减振垫浮置板轨道减振效果的关键因素;针对刚度近似线性且频变效应较小的橡胶减振垫,采用单一预压、单一频率刚度的评价方法对其减振效果评价影响较小。橡胶垫分别采用第2和第3预压参数时,隧道基底处Z振级插入损失分别为14.0 dB和13.0 dB,约有1 dB差异;对于刚度非线性明显的聚氨酯减振垫而言,不同预压评价方法的差异较大。聚氨酯减振垫分别采用第2,第3预压参数时,隧道基底处Z振级插入损失分别为10.1 dB和14.6 dB,可达4.5 dB或更大。建议针对不同运营情况,进一...  相似文献   

19.
在列车荷载作用下浮置板轨道会发生钢弹簧失能,为研究此问题对车辆-浮置板轨道系统动力特性的影响,基于车辆-轨道动力学理论,建立车辆-浮置板轨道耦合动力学模型,研究不同钢弹簧失能数量、位置、组合形式对车辆-浮置板轨道系统动力响应的影响。结果表明:当钢弹簧失能数量相同时,同一块浮置板的振动响应板中位置大于板端位置;钢弹簧失能1个时,板中位置钢轨、浮置板位移最大值分别比板端位置大0.49 mm和0.22 mm,加速度有效值分别比板端位置大13.34%和21.42%;单侧连续失能钢弹簧数量≥2个时,列车荷载作用下钢轨和浮置板垂向位移最大值均分别超出《浮置板轨道技术规范》规定的限值4 mm和3 mm;车体在频域上的振动响应主要集中在10 Hz内,钢弹簧失能会导致车体振动响应在频域上增大;单侧钢弹簧失能2个比双侧失能2个的钢轨位移最大值、加速度有效值分别增大17.75%、2.22%,比正常状态下钢轨位移、加速度分别增大37.08%,10.84%。钢弹簧失能增加了系统的振动响应,影响减振效果,应注意及时检修。  相似文献   

20.
轨下支承失效对轨道结构动力性能的影响   总被引:1,自引:0,他引:1  
通过建立车辆轨道耦合动力学模型,分析了普通整体道床、弹性支承块与浮置板三种轨道结构轨下支承失效后的动力响应。结果表明:轨下支承失效对列车通过时轮轨系统动态响应的影响较大;随着轨下支承失效个数的增加与列车运行速度的提高,轨道结构的位移、支座反力、轮轨力的动力响应都将显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号