首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
四线铁路钢箱混合梁弯斜拉桥设计研究   总被引:1,自引:0,他引:1  
根据四线铁路弯斜拉桥的受力特点,采用空间杆系有限元静力分析方法,围绕斜拉桥结构体系、桥梁整体刚度、收缩徐变、几何非线性等方面对其展开拉索、主梁、桥塔、基础的构造设计与研究.采用有限元仿真分析技术,研究正交异性桥面板的弯钢箱梁在受纵横向弯曲、剪力滞和扭转翘曲组合作用下的应力分布,进行钢箱梁与预应力混凝土梁的结合段、主梁与桥塔横梁固结、斜拉索上下钢锚箱的局部应力分析和构造研究.采用车桥耦合时变分析方法对其行车动力性能进行研究.采用反应谱及地震波时程分析方法同时对结构的抗震性能和抗震措施进行分析、研究.研究结果表明:四线铁路弯斜拉桥钢箱梁采用约3m的横隔板和腹板间距对改善主梁构造起到重要作用;良好的行车动力性能说明该桥采用1/900的挠跨比控制结构刚度较为合理;采用E型钢阻尼支座改善了桥梁的抗震性能.  相似文献   

2.
高碧波  黄昊 《铁道勘察》2022,(6):139-143+156
曲线矮塔斜拉桥的曲率半径不同时,其空间弯扭耦合效应存在较大差异,对桥梁设计影响程度不同,因此亟需开展曲率半径对曲线矮塔斜拉桥受力性能的影响规律研究。以邯济胶济联络线跨胶济高铁特大桥主桥曲线独塔矮塔斜拉桥为背景,通过建立有限元模型进行分析研究,对不同曲率半径的独塔矮塔斜拉桥开展了参数分析,研究曲率半径对桥梁结构受力性能的变化影响规律,重点考察主梁和主塔的受力与变形、斜拉索索力、支座反力等计算参数。研究结果表明曲率半径越小,则主梁扭矩越大,桥塔横向弯矩和位移越大,内外侧边支座反力差值越大。曲率半径较大时,主梁可按展开的直线桥进行计算。不同曲率半径下,收缩徐变改善了主梁和桥塔内力。曲线矮塔斜拉桥设计时,可采用预设偏心、桥塔设置预应力筋以及增设闭合抗扭钢筋等措施合理考虑曲率半径的影响。  相似文献   

3.
根据初等梁理论,采用空间梁格分析法对一例典型人字形薄壁箱梁桥进行结构简化及模拟分析。分析结果表明:当受荷载桥跨的两端为扭转约束、并在集中荷载和竖向均布荷载作用下时,空间梁格分析法所得结果与板壳模型的计算结果比较接近;当受荷载桥跨的两端为单向铰支座、并在偏心竖向荷载作用下时,由于约束扭转和畸变效应对主线和匝道的影响十分显著,空间梁格分析法所得结果与板壳模型计算结果相异较大,主要原因是初等梁理论不能反应宽翼缘薄壁箱梁约束扭转、畸变及剪力滞效应等受力特点。指出:对于宽翼缘薄壁箱梁桥结构在采用空间梁格分析法时,应同时考虑宽翼缘薄壁箱梁受力的特点对初等梁理论分析方法进行完善。  相似文献   

4.
以200 km/h单线铁路80 m跨简支系杆拱桥为研究对象,介绍其主梁、拱肋和吊杆等构件的设计参数。建立空间整体有限元模型,分析该简支系杆拱桥的支座反力、吊杆拉力分配以及主梁竖向位移等整体受力性能,并采用Ansys建立拱脚实体有限元模型,将整体模型计算内力结果施加至局部模型边界上,计算分析拱脚应力分布规律。最后分析了横撑以及材料、几何非线性对结构稳定性的影响。计算结果表明,结构整体受力、局部应力及结构稳定性均满足规范要求。  相似文献   

5.
研究目的:曲线槽形梁是一种梁、板组合的开口结构,在竖向荷载作用下梁体会产生弯扭耦合效应,道床板会发生双向弯曲和扭转,其受力较为复杂。结合一跨双线铁路曲线简支槽形梁的受力分析,研究曲线槽型梁的力学特性并指导设计和施工。研究结论:曲线槽形梁的受力呈现明显的空间特性,在竖向荷载作用下,曲线外侧主梁下缘承受的拉力较大,曲线内侧相对较小,道床板的剪力滞现象比较显著,支座不均匀沉降10 mm对梁体的受力影响不大。在上部竖向荷载逐渐增加的过程中,主梁上翼缘产生的内向侧移越来越大,槽口逐渐缩小。弯扭耦合效应使槽形梁曲线内、外侧的支反力大小不一,曲线外侧梁端支座反力比曲线内侧大,梁体有向曲线内侧整体平移变形的趋势。  相似文献   

6.
城市轨道交通大跨度小半径曲线梁桥设计   总被引:1,自引:0,他引:1  
轨道交通大跨度小半径曲线梁桥具有受力复杂、车辆荷载大、设计难度高等特点。曲线梁桥由于轴向变形与平面内弯曲耦合,竖向挠曲与扭转耦合,以及弯曲、扭转与截面畸变耦合等因素,易发生梁体水平径向位移过大、梁体翘曲、墩梁固结处开裂、支座脱空等工程问题。依托大连轻轨某小半径大跨度预应力混凝土曲线梁桥工程,通过对曲线桥梁受力情况的分析,考虑变形耦合效应,确定了截面、钢筋及预应力钢束设置等关键技术参数,并针对曲线梁存在的"外梁超载,内梁卸载"问题,对支承形式及偏心等关键参数进行了讨论。研究表明,采用单箱单室截面、合理设置钢筋、预应力约束、支座等措施能有效解决此类工程问题。  相似文献   

7.
研究目的:本文以某一无风撑三跨连续系杆拱桥为例,该桥的桥面较宽,横桥向设置三排支座,由此横梁变形及受力有所减小,但导致结构的刚度加大,增大了拱桥系杆在恒载、活载作用下绕桥梁中心线的内力,致使系杆在拱脚附近的扭转剪应力过大,导致系杆受力不尽合理,为寻求改善拱桥系杆受力的方法,于文中展开详细的分析及探讨。研究结论:分析结果表明:(1)调整中墩支座的安装顺序对结构受力会产生一定的影响;(2)吊杆终拉后再进行中墩支座的安装,可使应力得以提前释放,待横梁变形稳定后再进行中墩支座的安装。能够有效地减小系杆的扭转剪应力,使系杆斜截面主拉应力数值下降,系杆受力得到改善;(3)该研究结论适用于无风撑且桥面较宽的系杆拱桥的设计及相关计算分析。  相似文献   

8.
曲杆结构非线性分析中的首梁单元和曲梁单元   总被引:5,自引:0,他引:5  
刘磊  许克宾 《铁道学报》2001,23(6):72-76
采用直梁单元,编制了杆系结构的几何非线性有限元程序。通过2个曲杆结构的实例,对采用直梁单元和多种曲梁单元的有限元计算进行了对比。结果表明,采用两类单元的计算结果没有明显的差别。因而,在杆系结构的非线性分析中,可以采用直梁单元来模拟曲梁,进行屈曲分析。  相似文献   

9.
为探讨温度对受力复杂的曲线斜拉桥结构成桥使用舒适性及安全性的影响,以刚果布拉柴维尔滨河大道桥为工程背景,以9个不同曲率半径斜拉桥模型为例,分别计算其在季节温差和梯度温度工况下主梁竖向位移、支座反力的变化情况,分析温度荷载对曲线斜拉桥支座反力的影响规律。结果表明:梯度温度正温差工况下,曲线外侧主梁的竖向位移总是小于内侧,致使主梁发生向外翻转的趋势,且随着曲率半径减小翻转趋势越来越明显;曲线段外侧支反力大于内侧,其中过渡墩支座所受影响最大;整体升温效应会使全桥梁段产生向外扭转趋势,但影响小于梯度温度正温差,且整体升温还会使桥梁结构产生跨中上拱、边跨下挠的趋势。  相似文献   

10.
轨道结构与桥梁共同作用力学计算模型的研究   总被引:12,自引:2,他引:10  
轨道结构与桥梁共同作用的力学计算模型是解决轨道纵向位移阻力与梁轨相对信移相互作用计算问题的关键。本文采用平面杆系建立轨道结构与桥梁共同作有的力学计算模型,将轨道结构、梁体、支座、墩台、基础作为整体来考虑。桥梁和轨道的联结采用性梁单元模拟,其材料弹性模量和屈服应力通过轨道纵向位移阻力与梁轨相对位移关系的双折线化确定;同时为考虑梁跨挠曲对无缝线路钢轨受力的影响,梁跨高度采用刚臂模拟。通过对梁轨相互作用模型结构的试验结果和《铁路无缝线路》(1995年修订版)一书中桥上无缝线路钢轨力的钢轨变形微分方程解计算算例作比较,证实这一力学计算模型的合理性。  相似文献   

11.
为分析S型曲线钢箱梁桥的空间受力特性和纵横向剪力滞效应,基于Midas考虑翘曲变形的七自由度梁单元和ANSYS的Shell181壳单元,对一座四跨S型曲线连续钢箱梁桥进行全桥空间精细化仿真建模,研究其在不同荷载作用之下的结构位移、截面应力、支座反力及自振特性,并找出结构的最不利情况及其应力分布规律。经2种有限元单元的结果对比,可知采用板壳单元模型较之梁单元模型对该类桥梁弯扭耦合效应的模拟更为准确,其各项分析结果更偏安全,实际设计中对该类结构应尽可能采用板壳单元进行建模检算。为进一步研究其剪力滞效应,基于ANSYS计算结果研究了该桥各关键截面顶板的剪力滞效应,得出其剪力滞系数的纵横向变化规律,可为今后类似桥梁的设计提供参考。  相似文献   

12.
为了确保转体施工的曲线连续槽形梁结构设计安全可靠,需要解决以下关键技术问题:结构横向受力、日照温差应力较大、支座中心线横向位置、曲线转体结构横向偏载、曲线槽形梁结构受力计算等。通过道砟槽板横向预应力束的合理布置,克服横向连接处主拉应力;通过适当增加边主梁顶板保护层厚度和纵向预应力束的合理布置,控制了日照温差应力;研究合理的横向支撑位置,避免对结构产生横向次应力;曲线悬臂转体结构横向偏载,将球铰中心相对于上下承台设置横向预偏心,解决转动时横向自重不平衡引起梁体侧倾的问题;通过建立平面模型、单梁模型、梁格模型和实体模型,对比分析计算曲线空间结构的受力问题。结果表明:曲线连续槽形梁结构受力均满足规范要求。  相似文献   

13.
针对斜拉桥中双箱式主梁,采用三维有限元分析方法,建立具有不同斜腹板厚度(18 cm,24 cm,30 cm,35 cm,40 cm)的5个箱形主梁有限元模型,分析其空间应力分布特点,归纳出斜拉桥中此类双箱单室倒梯形截面的薄弱环节及斜拉桥箱梁在不同斜腹板厚度下的应力变化。考虑到梁段以外附近区域的作用,在其两端截面上施加由平面杆系结构分析所得的端面内力,另外,索力和预加力(梁纵向、横隔梁横向、斜腹板竖向)也施加在相应的位置,分析了不同工况下箱形主梁在自重、索力和预应力作用下的空间应力效应。通过对以上工况计算结果的静力分析,归纳出斜拉桥中此类双箱式截面的应力分布特点,并提出斜腹板厚度的合理化建议。分析表明:斜腹板厚度为30 cm左右时,主梁的应力分布比较合理。  相似文献   

14.
U型梁在青岛市轨道交通13号线工程得以大规模应用,为实现电缆上桥,本工程采用U型梁外侧腹板及底板开洞穿缆设计方案,避免了采用连续箱梁电缆上桥,实现了景观和谐统一。文章对U型梁开洞设计进行了平面杆系模型及空间实体单元模型计算分析,并与标准U型梁进行了对比分析,结果表明,U型梁开洞设计合理,结构受力及安全性满足限值要求。  相似文献   

15.
为了解高速铁路槽形连续梁拱桥拱梁固结段的真实应力状态及验证局部分析中边界条件表达的准确性,以济青高速铁路(66.5+142+66.5) m双线有砟轨道预应力混凝土连续槽形梁拱桥为工程背景,利用FEA有限元软件建立细化的空间实体有限元模型,分析中支点横截面空间效应,并对局部模型的边界条件模拟的正确性进行验证。分析表明:中支点截面应力呈现明显的空间不规律现象,恒载比活载剪力滞效应更为明显,局部位置如拱肋与主梁连接部位、主梁下缘支座处、横隔板进人孔倒角处应力集中,应适当加强配筋,其余部位应力均满足要求,通过验证局部模型的内力分布,确保实体模型应力结果的准确性,保证结构安全。  相似文献   

16.
采用轴对称有限元模型,加入桥跨及混凝土墩台结构,对10 MN球型支座进行了非线性接触有限元分析,确定了桥跨结构梁体合理厚度模型.研究了支座与混凝土墩台之间摩擦系教对支座的性能影响,建议摩擦系数取值为0.4左右;对比研究试验工况与实际工况下支座应力与变形情况,两者之间有一定差距,对试验数据要正确合理地采用.  相似文献   

17.
人字形桥梁由于采用了薄壁箱梁结构,其约束扭转、畸变效应及剪力滞比较突出。另外,人字形桥梁分叉结构的相互联系和制约作用,又使得约束扭转效应更加显著。同时随着宽翼缘箱梁结构使用的增加,人字形桥梁结构中薄壁直线箱梁仅以初等梁理论每个节点只有6个自由度的计算方法难以较好把握结构的受力行为。因此,本文基于初等梁理论及梁格理论分析方法的基础上,通过增加自由度的分析方法,在考虑初等梁受力特性的基础上同时考虑约束扭转、畸变角、畸变翘曲及剪力滞效应等薄壁箱梁结构的受力特点,并建立每节点10个自由度的人字形薄壁箱梁空间有限元分析单元,推导出单元的刚度矩阵及编制出相应的有限元分析程序,以解决宽翼缘薄壁箱梁的结构性能分析问题。通过算例分析表明,验证了本文方法的可靠性,便于实际应用,具有较高的工程使用价值。  相似文献   

18.
武汉到咸宁的城际铁路中采用了大量的小曲线半径连续梁桥,最小半径达320 m,为目前我国曲线半径最小的铁路连续梁桥。本文采用ASCB和BSAS建立平面模型以及采用Midas2006建立空间有限元模型,对跨径组合为(24.65+24.65)m预应力混凝土连续箱梁分别进行施工阶段及运营阶段分析,计算恒载、活载、预应力、收缩徐变、体系温度、局部温差、支座不均匀沉降等荷载,得出支反力及内力、应力、强度、变形等,并进行了分析比较。由于"弯-扭"耦合作用、剪力滞效应及畸变挠曲效应、预应力损失等,使得曲线梁腹板内侧和外侧受力不同、支座的内侧和外侧受力也不同,因此不能单一采用以直代曲或者平面代替空间的计算结果,尤其是当曲线半径较小的情况下,尽量采用多种计算手段相互校核。并且通过采用箱形截面设计、加横隔板、降低曲线上车辆通过速度等可降低曲线效应对梁的影响。  相似文献   

19.
以蒙华重载铁路主跨248 m部分斜拉桥为例,采用有限元分析理论,分析在该跨度范围内部分斜拉桥应用于重载铁路的适应性及特殊性。对该桥结构体系、主梁梁高、预应力次内力、桥塔刚度、桥塔高度及索塔梁刚度匹配等结构参数进行比选研究,确定合理布置形式。结果表明:(1)该重载铁路部分斜拉桥采用塔梁固结、墩梁分离体系,主墩支座采用双1 90 000 kN超大吨位球形钢支座;(2)主梁中支点—跨中梁高采用13 m-6 m组合为优;(3)短预应力钢束时弯矩近似矩形分布于预应力钢束布置区域,次内力较小;长预应力钢束次内力弯矩近似呈三角形分布,次内力影响明显;(4)桥塔尺寸主要由索鞍等构造及桥塔本身受力控制,其刚度对结构整体受力及刚度影响均较小;(5)为提高跨中截面等控制性区域结构受力性能,桥塔采用高塔型体系,高跨比1/4.35;(6)结构整体刚度主要由主梁提供约占67%,主塔及拉索对整体刚度贡献值为33%,主塔及拉索对刚度影响因素主要为桥塔高度。  相似文献   

20.
广州市轨道交通21号线象岭停车场入场线上跨广汕公路主桥采用(58+95+58)m连续刚构梁,上部结构为变截面单箱单室形式,下部结构主墩采用双薄壁墩,桥梁位于小半径曲线上。采用Midascivil 2013建立结构空间杆系有限元模型,主要从结构设计、结构纵向计算、结构横向计算等方面进行受力分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号