首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为解决盾构隧道在上软下硬地层中掘进时开挖面应力释放率难以确定的问题,基于一种既有的体积损失率迭代求解应力释放率的方法,依托广州地铁21号线盾构穿越上软下硬地层实际工程,通过数值模拟研究掌子面不同软硬岩比例、不同埋深条件下的应力释放率变化趋势,并结合现场实测资料进行对比分析。研究结果表明: 1)在盾构隧道掘进穿越上软下硬地层分界面的过程中,围岩的初次应力释放率范围基本保持在24%~36%,且随掌子面硬岩比例的增加呈线性增加趋势; 2)相对于围岩条件而言,埋深对应力释放率的影响更小。此外,在盾构隧道穿越上软下硬地层的全过程模拟中,根据围岩变化情况随不同开挖步动态调整应力释放率这一做法较全程取一固定应力释放率值更为合理。  相似文献   

2.
徐佳伟 《路基工程》2017,(5):100-105
在盾构施工过程中,软黏土地层开挖面的变形机理和稳定性研究仍处于经验阶段。利用离心模型试验,研究了上海黏土地层盾构开挖面稳定性问题。试验分析了盾构开挖过程中开挖面前方土体土压力的变化规律和支护应力与地表沉降的关系。给出了主被动破坏的极限支护应力值以及施工参考范围,这对黏土地层盾构开挖面稳定性控制至关重要。  相似文献   

3.
为研究上软下硬复合地层盾构隧洞开挖面破坏形式、确定开挖面极限支护力最小值,引入弹性模量比的概念,利用数值模拟技术研究开挖面前方上下土(岩)层弹性模量比对开挖面破坏的影响;对三维梯形楔形体模型进行改进,基于刚体极限平衡原理,提出考虑孔隙水压力条件下的部分梯形楔形体模型,并将该计算模型应用于实际工程中;对比Terzaghi松动土压力理论和三维松动土压力理论对极限支护力计算结果的影响。结果表明:1)开挖面前方上下土(岩)体弹性模量比对开挖面破坏有一定影响; 2)提出的部分梯形楔形体模型计算结果与数值模拟结果吻合较好; 3)采用三维松动土压力理论计算盾构隧洞开挖面上覆土压力,和部分梯形楔形体模型计算上软下硬地层盾构隧洞开挖面极限支护力最小值相对可靠。  相似文献   

4.
为研究复杂地层条件下泥水压力对掌子面稳定性的影响,依托连续穿越全断面软弱地层、上软下硬地层以及全断面微风化岩层的妈湾海底大直径泥水盾构隧道,分别建立不同地层条件下掌子面稳定性分析三维数值模型,得到掌子面位移分布规律及极限支护应力比。此外,由于既有研究常采用矩形荷载模式对泥水压力进行简化,对比分析实际梯形荷载模式及简化矩形荷载模式对掌子面稳定性分析的差异。结果表明:1)全断面软弱地层中掌子面位移分布呈现"中间均匀,两端分化"形态,上软下硬地层中自拱顶向拱底大致线性减小;2)采用切线交汇法获得掌子面的极限支护应力比全断面软弱地层最大,上软下硬地层次之,全断面微风化岩层中最小;3)掌子面在梯形荷载分布情况下上部土体位移远大于矩形荷载分布情况,且得到的极限支护应力比大于矩形荷载分布,计算中忽略泥水容重影响是不合理的。  相似文献   

5.
为了研究盾构机掘进姿态的控制方法,以长沙地铁2号线望梅区间隧道为工程依托,通过对现场盾构机穿越起伏基岩地层时软硬岩高度比和围岩强度比与油缸推力比的统计分析,得出了盾构区间直线段和曲线段地层由软到硬和由硬到软的合理的油缸推力比。将盾构油缸推力比应用到工程实际中,得出相应的直线段和曲线段的水平、竖向偏差,且均满足轴线偏差不得超过50 mm的标准要求,从而得出盾构机穿越起伏基岩地层合理掘进姿态的控制方法。  相似文献   

6.
康芮  舒东利 《路基工程》2018,(1):194-199
在盾构隧道施工中,由于地层条件以及盾构掘进参数设置的多变性,使盾构给予开挖面的支护压力有较大的波动。针对广东肇庆市盾构隧道穿越软硬不均地层的施工,运用数值模拟研究由于开挖面支护压力变化而引起的地层变形规律、开挖面失稳后的破坏状态,并最终确定使开挖面保持稳定的极限支护压力。  相似文献   

7.
采用大型有限元软件ABAQUS模拟城市地铁隧道盾构开挖诱发地表沉降规律,并针对开挖推进距离、开挖面支护以及地表建筑物刚度条件对古建筑物地表沉降影响进行了详细分析,得到以下结论:拱顶沉降、上测点周边收敛位移和下测点周边收敛位移,实测数据分别比数值模拟数据大5.41%、13.21%和10.15%,这与现场施工条件比数值模拟更为复杂有关,也说明数值模拟比较可靠。增大盾构推进距离会加大古建筑物地表最大沉降值,但是增大幅度有限,当推进距离增大为原来的3倍时,古建筑物地表最大沉降增大幅度低于10%;增大盾构开挖面支护力会明显减小古建筑物地表最大沉降值,施工过程中可以适当采取增大开挖面支护力的方法来减小古建筑物地表沉降。盾构上方地表存在古建筑物能明显减小地表最大沉降值,但地表沉降槽宽度也相应增加,因此施工过程中若盾构上方存在古建筑物,应进行特殊考虑。  相似文献   

8.
霍建勋  王明年  晁峰 《隧道建设》2017,37(Z1):219-223
为了解决在起伏基岩地层中盾构掘进姿态控制困难及刀盘不均匀消耗问题,以长沙地铁2号线西延线盾构区间为工程实例,通过对现场油缸推力关系统计分析,得出盾构区间直线段和曲线段地层由软至硬和由硬至软的合理的油缸推力比,并应用于工程实际,得出相应的直线段和曲线段的水平、竖向偏差且均满足轴线偏差不超过50 mm的标准要求。同时,通过对现场每百米刀具更换情况统计分析,得出合理的刀具改良配置建议。  相似文献   

9.
王承震 《隧道建设》2015,35(7):642-649
扬州瘦西湖隧道地处全黏土地层,在该类地层中使用泥水盾构施工的案例较少,全黏土地层在盾构施工下的土体力学性质与变形规律尚未得到充分研究。为了解决全黏土地层在盾构施工下开挖面稳定性与各项盾构参数之间的关系问题,采用室内试验与计算模拟相结合的方法对瘦西湖隧道泥水盾构施工停机状态下的开挖面稳定性进行研究分析。研究结果表明:1)盾构停机时,随着停机时间的增长,泥水不断浸入开挖面前方土体,开挖面附近土体应力表现出一定的拱效应,导致开挖面稳定性不断降低;2)在泥水浸润时间相同的条件下,随膨胀土膨胀力取值的增高,开挖面极限支护压力呈现增长趋势;3)根据开挖面失稳原因,提出了开挖面稳定性控制措施,并通过模型计算进行验证。  相似文献   

10.
刘向阳 《路基工程》2019,(2):114-119
针对珠江三角洲城际快速轨道交通广州至佛山段复合式土压平衡盾构隧道下穿珠江北航道的掘进过程进行了研究,结果表明:通过数值模拟分析左、右线隧道开挖后,其拱部最大垂直位移和最大水平位移分别小于竖向位移、水平位移允许值,验证了衬砌结构安全性;断面最大位移满足沉降要求,下穿珠江施工对环境影响较小。通过现场监测得出隧道开挖完成后,河床泥面最大位移以及拱顶沉降和洞径收敛值,远小于控制标准,单次沉降小于预警值,总体上满足设计要求。  相似文献   

11.
为了提升地铁穿越公路桥梁桩基的稳定性,考察了盾构施工过程中开挖步数、掌子面推力和注浆压力对桩基变形的影响。结果表明,随着开挖步数的增加,桩基横向水平位移与桩身埋深关系曲线逐渐转变为“鼓凸”状,且随着开挖步数增加,桩基横向水平位移呈现逐渐增大的趋势。掌子面推力不会对桩基横向位移造成明显影响,但随着掌子面推力逐渐增大,桩基纵向位移呈现逐渐增大的趋势;随着注浆压力增加,桩体横向位移逐渐增大而纵向位移逐渐减小。在对地铁穿越公路桥梁桩基进行盾构施工过程中,可以通过调整注浆压力来对桩体变形进行控制,从而最大限度的保证桩体的稳定。  相似文献   

12.
陈刚 《路基工程》2022,(4):174-178
结合贵阳地铁某车站拱盖法施工,采用数值分析研究上软下硬复杂地层中不同覆跨比对地表沉降、拱顶沉降和地层应力分布的影响,提出最优覆跨比的确定方法。研究表明:随着覆跨比的增大,地表沉降和拱顶沉降均不断减小,但减小幅度在覆跨比超过0.4后减缓;随着盖挖法施工,车站上覆地层中大主应力方向产生偏转,产生土拱效应,土拱拱顶深度随着覆跨比的增大而增大;不同覆跨比下,超过30%的拱顶沉降和地层沉降均发生在拆撑施做内衬步骤;此类地质条件中盖挖法最优覆跨比可选为0.4。  相似文献   

13.
陈伟国 《路基工程》2015,(3):210-212
针对南京地铁机场线1号风井-禄口机场区间隧道,在长距离高强度岩层兼上软、下硬复合地层中穿越重要建(构)筑物的施工环境下,采用TBM和EPB双模式可转换盾构掘进施工,既能满足在高强度硬岩中掘进效率,又能保证盾构穿越上软、下硬复合地层时建(构)筑物的安全。  相似文献   

14.
张大鹏 《路基工程》2021,(1):188-191
以某隧道工程下穿高架桥为研究对象,分析了隧道开挖对邻近桥梁桩基的位移、剪力和弯矩等的影响规律。结果表明:隧道开挖对桩基的横向位移和纵向位移影响较小,最大横、纵向位移均小于规范规定的4 mm;桩基离盾构开挖面越远,受到的影响越小;隧道掘进过程中对桩体的轴力、剪力和弯矩影响较大,因此,在隧道施工过程中应对邻近桩体采取一定的加固措施以保证施工顺利推进。  相似文献   

15.
当盾构近距离穿越邻近隧道时,由于存在既有隧道的刚度约束,隧道周围土体的破坏模式会受到既有隧道影响。考虑盾构近距离穿越紧邻已有隧道的特殊施工形式,构建三维弹塑性有限元计算模型,分析盾构处于不同位置时其开挖面失稳破坏形态、开挖面支护压力与盾构掘进位移之间的关系以及隧道上方地表沉降规律;基于极限平衡法,推导盾构近距离穿越紧邻隧道时开挖面极限支护压力变化模式,并对相关参数的敏感性进行验证讨论。研究结果表明:既有隧道的存在使得破坏区域受到抑制,沿开挖方向两滑动面不对称,靠近既有隧道的滑动面张开角比另一滑动面张开角小;随着楔形体倾斜角增大,相同内摩擦角条件下的开挖面支护压力不断增大,同时由于盾构掘进产生的土拱效应和盾构开挖面上方既有隧道的刚度约束,随着内摩擦角的不断增大,开挖面支护压力呈先增大后逐渐减小的抛物线形变化;相同参数条件下,盾构在黏性土层中掘进时,由于黏性土层中产生的土拱效应较弱,所需提供开挖面稳定的支护压力略大,开挖面支护压力较盾构在砂性土层中掘进时略大,随着埋深比的增加,维持盾构开挖面稳定的极限支护压力逐渐增大,且随着内摩擦角的增大,开挖面极限支护压力相应增大。研究成果可为类似盾构隧道工程建设提供一定的理论参考。  相似文献   

16.
泥水盾构施工过程中,压力舱内泥浆压力梯度很难与地层土水压力梯度保持一致,尤其是大断面时,其顶部泥浆压力显著大于地层土水压力,致使开挖面面临严峻的被动破坏风险,因此有必要对盾构隧道开挖面被动破坏的研究进展进行总结和分析,指出泥水盾构砂土地层开挖面被动破坏研究中存在的问题。从极限分析法等理论研究、数值模拟及模型试验3个方面总结盾构隧道开挖面被动破坏研究进展,并分析研究中存在的问题。主要结论如下: 1)目前缺少砂土地层中泥浆冲破泥膜、发生劈裂破坏及其对开挖面稳定性影响的相关研究; 2)受到试验条件的限制,尚未开展大直径开挖面被动破坏,尤其是气压支护-带压开舱等危险工况下开挖面稳定的离心模型试验; 3)离心模型试验采用刚性板模拟盾构开挖面,与土体实际的受力和变形情况存在较大的差异。最后,对今后的主要研究方向提出建议。  相似文献   

17.
为了全面和准确地计算盾构施工引起的地层横向总位移值,依据弹性力学Mindlin解,在已有研究的基础上,增加考虑面板式及辐条式刀盘的摩擦力对地层横向位移的影响,给出刀盘的简化计算模型,通过坐标转化和积分的方法分别推导2种结构形式刀盘正面及圆周面摩擦力产生的地层横向位移计算公式,并采用位移叠加的方法,给出盾构施工引起地层横向总位移计算公式,并对已有工程算例计算和分析,将结果与实测值对比。结果表明:计算结果可以反映盾构施工阶段地层横向变形的特点;在盾尾附近的一定范围内,同步注浆压力和盾壳摩擦力对地层横向位移的影响程度较大,为主要影响因素;在刀盘附近的一定范围内,盾壳摩擦力,刀盘圆周面环向摩擦力和刀盘正面摩擦力对地层横向位移的影响程度不可忽略;各因素产生的地层横向位移值随着深度的增加而衰减并向深层土体逐渐扩散;地层横向位移值受刀盘不同结构形式的影响程度较小,分布规律相仿;在刀盘推进面周围的一定范围内,地层横向总位移值正负区域的分布与刀盘的旋转方向有关。  相似文献   

18.
安斌  刘学霸  杨春勃  王祖贤 《隧道建设》2020,40(Z2):289-296
盾构始发是盾构施工的关键环节,也是盾构施工时的高风险环节。为给南昌地区富水砂层条件下盾构曲线始发施工提供掘进参数设置样本,以南昌市轨道交通3号线绳金塔站—六眼井站盾构始发工程为背景,对富水砂层盾构小半径曲线始发段主要掘进参数进行统计分析,确定相关参数的优势区间,并基于盾体姿态控制参数和地表沉降进行掘进参数控制效果评价。结果表明: 1)盾构水平方向2组油缸推力在曲线段和直线段变化差异明显,线路平曲线半径越小,差值越大,在左右线曲线段和直线段水平方向2组油缸推力分别相差872%和758%; 2)线路平曲线半径越小,所需的总推力和刀盘转矩越大,而掘进速度略有降低,左右线总推力均值为1 3976 t和1 6717 t,刀盘转矩均值为3 1011 kN·m和3 7239 kN·m,掘进速度均值为388 mm/min和351 mm/min; 3)由于始发段掘进断面地层相对均一,土舱压力基本随隧道埋深呈线性增加,而由于右线曲线半径更小,因此右线土舱压力离散程度相对较高; 4)左右线盾尾注浆量差异不大,优势区间均为3~6 m3,均值约为4 m3; 5)左右线曲线始发段水平方向盾体姿态超限率分别为2%和4%,地表累积沉降最大值仅为625 mm,表明本工程小半径曲线始发段掘进参数控制效果较好,掘进参数对地层条件和线路线型具有良好的适应性。  相似文献   

19.
针对深厚软土地层、高承压水等不利条件下的基坑开挖及顶管施工对临近桥梁结构影响问题,以临近武汉常青路高架桥梁某电力通道工程施工为背景,构建了三维数值分析模型,系统分析了基坑开挖及顶管施工对高架桥梁结构位移及受力的影响。研究表明:基坑开挖及顶管施工引起的桥梁结构最大水平向、竖向位移分别为1.31mm、1.13mm,桥梁结构最大轴力、桥桩弯矩分别为6694.4 kN、263.3kN·m,施工前后轴力累计变化率为-1.79%,弯矩累计变化率为1.35%,桥梁结构受力变化较小,均在规范限值以内,表明本工程设计方案是可行的、合理的。设计方案和研究成果可为临近桥梁结构安全施工提供支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号