首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This article evaluates the case for vehicle miles traveled (VMT) reduction as a core policy goal for reducing greenhouse gases (GHGs), concluding the economic impacts and social consequences would be too severe given the modest potential environmental benefits. Attempts to reduce VMT typically rely on very blunt policy instruments, such as increasing urban densities, and run the risk of reducing mobility, reducing access to jobs, and narrowing the range of housing choice. VMT reduction, in fact, is an inherently blunt policy instrument because it relies almost exclusively on changing human behavior and settlement patterns to increase transit use and reduce automobile travel rather than directly target GHGs. It also uses long-term strategies with highly uncertain effects on GHGs based on current research. Not surprisingly, VMT reduction strategies often rank among the most costly and least efficient options. In contrast, less intrusive policy approaches such as improved fuel efficiency and traffic signal optimization are more likely to directly reduce GHGs than behavioral approaches such as increasing urban densities to promote higher public transit usage. As a general principle, policymakers should begin addressing policy concerns using the least intrusive and costly approaches first. Climate change policy should focus on directly targeting greenhouse gas emissions (e.g., through a carbon tax) rather than using the blunt instrument of VMT reduction to preserve the economic and social benefits of mobility in modern, service-based economies. Targeted responses are also more cost effective, implying that the social welfare costs of climate change policy will be smaller than using broad-brushed approaches that directly attempt to influence living patterns and travel behavior.  相似文献   

2.
An important planning and policy question in the transportation, energy, and environment areas is whether or not air quality control and the associated funding preference and mitigation efforts to attain air quality conformity have indeed led to traveler behavior changes such as reduction in vehicle miles traveled (VMT) or VMT growth rates. In this research, we develop statistical models to analyze the relationship between air quality nonattainment designation and VMT between 1966 and 2004 based on observed data. These models employ different statistical methods, including hypothesis testing and simultaneous equations. Findings from these statistical models and datasets are consistent, and suggest there is a statistically significant negative correlation between nonattainment designation and VMT/VMT growth. For instance, the simultaneous equation model in this research, suggests that if a nonattainment area and an attainment area that are similar in all other aspects (population composition, socio-economics, urbanization, fuel price, vehicle stock, etc.) are compared, the VMT in the nonattainment area will be 1.80% less than that in the attainment area in the short run, and 7.61% less in the long run. While these results show strong statistical evidence that efforts in reducing VMT in nonattainment areas have been successful, future research should be conducted to attribute the VMT reduction effects to specific policy instruments for decision-making (e.g. the Congestion Management and Air Quality Improvement program, the conformity regulation in the transportation planning process, etc.).  相似文献   

3.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

4.
Although researchers have long argued in favor of off-peak transit service, studies that have empirically estimated its benefits regarding revenue generation, trip diversions, and greenhouse gas (GHG) emission are rare. This study provides important evidence about the benefits of off-peak commuter rail service by focusing on the Pascack Valley line in New Jersey, where off-peak service was introduced in October 2007. The research involved two focus groups and an onboard survey of passengers. Benefits were estimated regarding additional revenue generation and reduction in vehicle miles traveled (VMT) and GHG emission. The research shows that the new off-peak service potentially reduced VMT by more than 12 million annually due to diversions from other modes. Although diversions from other modes resulted in a substantial reduction in GHG emissions, due to the additional diesel fuel used by the new trains, the net GHG savings were in the range of 28–49 %. The research further shows that both peak period and off-peak riders benefited from the new off-peak service. Evidence is found about an increase in new transit riders and a modest increase peak period usage because of the off-peak service.  相似文献   

5.
Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession years in the United States and has reached record levels in 2017. With transportation accounting for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although there is considerable understanding of the various factors that influence household vehicular travel, there is little knowledge of their relative contribution to explaining variance in household VMT. This paper presents a holistic analysis to identify the relative contribution of socio-economic and demographic characteristics, built environment attributes, residential self-selection effects, and social and spatial dependency effects in explaining household VMT production. The modeling framework employs a simultaneous equations model of residential location (density) choice and household VMT generation. The analysis is performed using household travel survey data from the New York metropolitan region. Model results showed insignificant spatial dependency effects, with socio-demographic variables explaining 33 percent, density (as a key measure of built environment attributes) explaining 12 percent, and self-selection effects explaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44 percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic factors, calling for further research in this domain to better understand the relative contribution of various drivers of household VMT.  相似文献   

6.
A number of recent studies have examined the hypothesis of induced travel in an attempt to quantify the phenomenon (Hansen & Huang 1997; Noland, forthcoming). No study has yet attempted to adjust for potential simultaneity bias in the results. This study addresses this issue by the use of an instrumental variable (two stage least squares) approach. Metropolitan level data compiled by the Texas Transportation Institute for their annual congestion report is used in the analysis and urbanized land area is used as an instrument for lane miles of capacity. While this is not an ideal instrument, results still suggest a strong causal relationship but probably that most previous work has had an upward bias in the coefficient estimates. The effect of lane mile additions on VMT growth is forecast and found to account for about 15% of annual VMT growth with substantial variation between metropolitan areas. This effect appears to be closely correlated with percent growth in lane miles, suggesting that rapidly growing areas can attribute a greater share of their VMT growth to growth in lane miles.  相似文献   

7.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

8.
This study addresses the dearth of research that examines the impacts of alternative fuel use on operational costs of public transit in the U.S. Specifically, the study examines the impact on operational costs of shifting diesel gallons to biodiesel or to compressed natural gas (CNG) for an unbalanced panel of 269 public transit systems in the U.S. from 2008 through 2012, using an econometric cost function approach. We find that shifting all diesel gallons to biodiesel results in operational cost increases ranging from 1 to 12 percent, with smaller cost increases being realized with increases in system size. Shifting all diesel gallons to CNG results in operational cost increases between 5 and 10 percent – again with smaller impacts for larger systems. These findings suggest that there are some economies of using biodiesel and CNG with large scale production. That is, the cost increases associated with increased fuel prices, decreased fuel economy, increased maintenance costs, and increased fueling costs associated with biodiesel and CNG are mitigated somewhat by large scale production. The findings of this study suggest that increased operational costs are an important consideration in policies aimed at encouraging the use of alternative fuels by U.S. public transit systems.  相似文献   

9.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

10.
Concerns about local air pollution and climate change have prompted all levels of government to consider a variety of policies to reduce vehicle dependence and fuel consumption, as the transportation sector is one of the largest sources of local and global emissions. Because many of the policy options under consideration are market-based (e.g., gasoline tax, carbon tax), it is important to consider how the impacts would vary across space and affect different subpopulations. Evaluating incidence is relevant for both the expected costs and benefits of a particular policy, however detailed data on vehicle-miles traveled (VMT) and fuel consumption allowing for the distributions of these variables to be estimated at a fine geographic scale is rarely available. This paper uses a unique dataset with more than 20 million vehicles in California to derive estimates of VMT and fuel consumption in order to examine the spatial distribution of impacts for an increase in the price of gasoline as well as the consequences of using different statistics for policy evaluation. Results show that VMT and fuel consumption distributions are not symmetrically distributed and vary significantly within transportation planning regions. To understand the potential implications of this asymmetry, we do a back of the envelope comparison using the mean and mode of the VMT or fuel consumption distribution for policy analysis. We find that assuming a symmetric distribution can lead to a divergence of 20–40% from the estimates based on the empirical distribution. Our results, therefore, introduce caution in interpreting the incidence of policies targeting the transportation sector based on averages.  相似文献   

11.
‘Vehicle miles traveled’ (VMT) is an important performance measure for highway systems. Currently, VMT [or ‘annual average daily traffic’ (AADT)] is estimated from a combination of permanent counting stations and short-term counts done at specified locations as part of the Highway Performance Monitoring System (HPMS) mandated by the US Federal Highway Administration. However, on some roadway sections, Intelligent Transportation Systems (ITS) such as detectors and cameras also produce traffic data. The question addressed in this paper is whether and under what conditions ITS systems data could be used instead of HPMS short-term counts (called ‘coverage counts’)? This paper develops a methodology for determining a threshold number of missing daily traffic counts, or alternatively, the number of valid ITS data observations needed, in order to confidently replace the HPMS coverage counts with ITS data.

Because ITS counts, coverage counts, and actual ground counts (e.g. continuous counts) cannot be found coexisting on a roadway section, it is hard to compare them directly. In this paper, the Monte Carlo simulation method is employed to generate synthetic ITS counts and coverage counts from a set of relatively complete traffic counts collected at a continuous count station. Comparisons are made between simulated ITS counts, coverage counts, and actual ground counts. The simulation results indicate that when there are<330 daily traffic counts missing in a set of ITS counts in a year, that is, when there are at least 35 days of valid data, ITS counts can be used to derive a better AADT than using coverage counts. This result is applied to calculate the VMT for the Hampton Roads region in Virginia. The comparison between the VMTs derived with using and not using the threshold number indicates that these two VMTs are significantly different.  相似文献   

12.
To address some of the uncertainties inherent in large-scale models, two very different urban models, an advanced travel demand model and an integrated land use and transportation model, are applied to evaluate land use, transit, and auto pricing policies in the Sacramento, CA (US), region. The empirical and modeling literature is reviewed to identify effective land use, transit, and pricing policies and optimal combinations of those policies and to provide a comparative context for the results of the simulation. The study illustrates several advantages of this approach for addressing uncertainty in large-scale models. First, as Alonso [Predicting the best with imperfect data, AIP Journal (1968)] asserts, the intersection of two uncertain models produces more robust results than one grand model. Second, the process of operationalizing policy sets exemplifies the theoretical and structural differences in the models. Third, a comparison of the results from multiple models illustrates the implications of the respective models' strengths and weaknesses and may provide some insights into heuristic policy strategies. Some of the key findings in this study are (1) land use and transit policies may reduce vehicle miles traveled (VMT) and emissions by about 5–7%, and the addition of modest auto pricing policies may increase the reduction by about 4–6% compared to a future Base Case scenario for a 20-year time horizon; (2) development taxes and land subsidy policies may not be sufficient to generate effective transit-oriented land uses without strict growth controls elsewhere in the region; and (3) parking pricing should not be imposed in areas served by light rail lines and in areas in which increased densities are promoted with land subsidy policies.  相似文献   

13.
The theory of induced travel demand asserts that increases in highway capacity will induce additional growth in traffic. This can occur through a variety of behavioral mechanisms including mode shifts, route shifts, redistribution of trips, generation of new trips, and long run land use changes that create new trips and longer trips. The objective of this paper is to statistically test whether this effect exists and to empirically derive elasticity relationships between lane miles of road capacity and vehicle miles of travel (VMT). An analysis of US data on lane mileage and VMT by state is conducted. The data are disaggregated by road type (interstates, arterials, and collectors) as well as by urban and rural classifications. Various econometric specifications are tested using a fixed effect cross-sectional time series model and a set of equations by road type (using Zellner’s seemingly unrelated regression). Lane miles are found to generally have a statistically significant relationship with VMT of about 0.3–0.6 in the short run and between 0.7 and 1.0 in the long run. Elasticities are larger for models with more specific road types. A distributed lag model suggests a reasonable long-term lag structure. About 25% of VMT growth is estimated to be due to lane mile additions assuming historical rates of growth in road capacity. The results strongly support the hypothesis that added lane mileage can induce significant additional travel.  相似文献   

14.
Increasing private sector involvement in transportation services has significant implications for the management of road networks. This paper examines a concession model’s effects on a road network in the mid-sized city of Fresno, California. Using the existing transportation planning models of Fresno, we examine the effects of privatization on a number of typical system performance measures including total travel time and vehicle miles traveled (VMT), the possibility of including arterials, and the differences between social cost prices and profit maximizing prices. Some interesting insights emerge from our analysis: (1) roads cannot be considered as isolated elements in a concession model for a road network; (2) roads can function as complements at some levels of demand and become substitutes at other levels; (3) policy makers/officials should consider privatizing/pricing arterials along with privatizing highways; (4) temporally flexible but limited price schedule regulations should be part of leasing agreements; and (5) non-restricted pricing may actually worsen system performance, while limited pricing can raise enormous profits as well as improve system performance.  相似文献   

15.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

16.
Trip chaining represents a way to reduce vehicle miles traveled (VMT) that does not require people to shift away from driving private automobiles. While the existing literature on trip chaining acknowledges this potential, little has been done by way of quantifying this. This research seeks to fill this gap by using a large travel survey from the San Francisco Bay area to model the VMT generated by automobile tours as a function of tour composition (i.e., the number and type of destinations on that tour). The model results indicate that many tours involving trips chains (i.e., those tours with more than one destination) generate significantly less VMT than would occur if the destinations in these tours were split into multiple tours with single destinations. Tours that combine a work and non-work destination (which are the most common types of trip chains) particularly demonstrate potential for VMT reduction. Adding a non-work destination to a work tour is usually (depending on the specific type of destination) predicted to result in a reduction of 6–11 VMT, or about 20–30 %. Adding two non-work destinations to a work tour is usually predicted to result in a reduction of 10–22 VMT, or about 25–50 %.  相似文献   

17.
One interaction between environmental and safety goals in transport is found within the vehicle fleet where fuel economy and secondary safety performance of individual vehicles impose conflicting requirements on vehicle mass from an individual’s perspective. Fleet characteristics influence the relationship between the environmental and safety outcomes of the fleet; the topic of this paper. Cross-sectional analysis of mass within the British fleet is used to estimate the partial effects of mass on the fuel consumption and secondary safety performance of vehicles. The results confirmed that fuel consumption increases as mass increases and is different for different combinations of fuel and transmission types. Additionally, increasing vehicle mass generally decreases the risk of injury to the driver of a given vehicle in the event of a crash. However, this relationship depends on the characteristics of the vehicle fleet, and in particular, is affected by changes in mass distribution within the fleet. We confirm that there is generally a trade-off in vehicle design between fuel economy and secondary safety performance imposed by mass. Cross-comparison of makes and models by model-specific effects reveal cases where this trade-off exists in other aspects of design. Although it is shown that mass imposes a trade-off in vehicle design between safety and fuel use, this does not necessarily mean that it imposes a trade-off between safety and environmental goals in the vehicle fleet as a whole because the secondary safety performance of a vehicle depends on both its own mass and the mass of the other vehicles with which it collides.  相似文献   

18.
Automated vehicles represent a technology that promises to increase mobility for many groups, including the senior population (those over age 65) but also for non-drivers and people with medical conditions. This paper estimates bounds on the potential increases in travel in a fully automated vehicle environment due to an increase in mobility from the non-driving and senior populations and people with travel-restrictive medical conditions. In addition, these bounding estimates indicate which of these demographics could have the greatest increases in annual vehicle miles traveled (VMT) and highlight those age groups and genders within these populations that could contribute the most to the VMT increases. The data source is the 2009 National Household Transportation Survey (NHTS), which provides information on travel characteristics of the U.S. population. The changes to light-duty VMT are estimated by creating and examining three possible travel demand wedges. In demand wedge one, non-drivers are assumed to travel as much as the drivers within each age group and gender. Demand wedge two assumes that the driving elderly (those over age 65) without medical conditions will travel as much as a younger population within each gender. Demand wedge three makes the assumption that working age adult drivers (19–64) with medical conditions will travel as much as working age adults without medical conditions within each gender, while the driving elderly with medical any travel-restrictive conditions will travel as much as a younger demographic within each gender in a fully automated vehicle environment. The combination of the results from all three demand wedges represents an upper bound of 295 billion miles or a 14% increase in annual light-duty VMT for the US population 19 and older. Since traveling has other costs besides driving effort, these estimates serve to bound the potential increase from these populations to inform the scope of the challenges, rather than forecast specific VMT scenarios.  相似文献   

19.
Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters.  相似文献   

20.
Climate protection will require major reductions in GHG emissions from all sectors of the economy, including the transportation sector. Slowing growth in vehicle miles traveled (VMT) will be necessary for reducing transportation GHG emissions, even with major breakthroughs in vehicle technologies and low-carbon fuels (Winkelman et al., 2009). The Center for Clean Air Policy (CCAP) supports market-based policy approaches that minimize costs and maximize benefits. Our research indicates that significant GHG reductions can be achieved through smart growth and travel efficiency measures that increase accessibility, improve travel choices and make optimum use of existing infrastructure. Moreover, we find such measures can deliver compelling economic benefits, including avoided infrastructure costs, leveraged private investment, increased local tax revenues and consumer vehicle ownership and operating cost savings (Winkelman et al., 2009).As a society, what we build – where and how – has a tremendous impact on our carbon footprint, from building design to transportation infrastructure and land-use patterns. The empirical and modeling evidence is clear – people drive less in locations with efficient land use patterns, high quality travel choices and reinforcing policies and incentives (Ewing et al., 2008). It is also clear that there is growing and unmet market demand for walkable communities, reinforced by demographic shifts and higher fuel prices (Leinberger, 2006, Nelson, 2007). Transportation policy in the United States must rise to meet this demand for more travel choices and more livable communities.The academic, ideological and political debates about the level of GHG reductions and penetration rates that can or should be achieved via smart growth and pricing on the one hand, or measures such as ‘eco-driving’ and signal optimization on the other, have served their purpose: we know which policies are ‘directionally correct’ – policies that reduce GHG emissions even though we may not know the scope of those reductions. Now is the time to implement directionally correct policies, assess what works best where, and refine policy based on the results. It is a framework that CCAP calls “Do. Measure. Learn.”The Federal government is poised to spend $500 billion on transportation (Committee on Transportation and Infrastructure, 2009). CCAP encourages Congress to “Ask the Climate Question” – will our transportation investments help reduce GHG emissions or exacerbate the problem? Will they help increase our resilience to climate change impacts or increase our vulnerability? And, while we’re at it, will our investment foster energy security, livable communities and a vibrant economy? Federal transportation and climate policies should empower communities to implement locally-determined travel efficiency solutions by providing appropriate funding, tools and technical support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号