首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

2.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

3.
Vehicle platooning, a coordinated movement strategy, has been proposed to address a range of current transport challenges such as traffic congestion, road safety, energy consumption and pollution. But in order to form platoons in an ad-hoc manner the vehicles have to ‘speak the same language’, which is in current practice limited to vehicles of particular manufacturers. There is no standard language yet. Also in research, while the current literature focuses on platoon control strategies, intra-platoon communication, or platooning impacts on traffic, the conceptualization of platooning objects and their operations remained unattended. This paper aims to fill this fundamental gap by developing a formal model of platooning concepts. The paper proposes an ontological model of platooning objects and properties and abstract basic building blocks of platoon operations that can then be aggregated to complex platooning behavior. The presented ontological model provides the logical reasoning to support vital decision-making during platoon lifecycles. The ontological model is implemented and demonstrated.  相似文献   

4.
The use of electric vehicles (EVs) is viewed as an attractive option to reduce CO2 emissions and fuel consumption resulted from transport sector, but the popularization of EVs has been hindered by the cruising range limitation and the charging process inconvenience. Energy consumption characteristics analysis is the important foundation to study charging infrastructures locating, eco-driving behavior and energy saving route planning, which are helpful to extend EVs’ cruising range. From a physical and statistical view, this paper aims to develop a systematic energy consumption estimation approach suitable for EV actual driving cycles. First, by employing the real second-by-second driving condition data collected on typical urban travel routes, the energy consumption characteristics analysis is carried out specific to the microscopic driving parameters (instantaneous speed and acceleration) and battery state of charge (SOC). Then, based on comprehensive consideration of the mechanical dynamics characteristics and electric machine system of the EVs, a set of energy consumption rate estimation models are established under different operation modes from a statistical perspective. Finally, the performance of proposed model is fully evaluated by comparing with a conventional energy consumption estimation method. The results show that the proposed modeling approach represents a significant accuracy improvement in the estimation of real-world energy consumption. Specifically, the model precision increases by 25.25% in decelerating mode compared to the conventional model, while slight improvement in accelerating and cruising mode with desirable goodness of fit.  相似文献   

5.
Use of electric vehicles (EVs) has been viewed by many as a way to significantly reduce oil dependence, operate vehicles more efficiently, and reduce carbon emissions. Due to the potential benefits of EVs, the federal and local governments have allocated considerable funding and taken a number of legislative and regulatory steps to promote EV deployment and adoption. With this momentum, it is not difficult to see that in the near future EVs could gain a significant market penetration, particularly in densely populated urban areas with systemic air quality problems. We will soon face one of the biggest challenges: how to improve efficiency for EV transportation system? This research takes the first step in tackling this challenge by addressing a fundamental issue, i.e. how to measure and estimate EVs’ energy consumption. In detail, this paper first presents a system which can collect in-use EV data and vehicle driving data. This system then has been installed in an EV conversion vehicle built in this research as a test vehicle. Approximately 5 months of EV data have been collected and these data have been used to analyze both EV performance and driver behaviors. The analysis shows that the EV is more efficient when driving on in-city routes than driving on freeway routes. Further investigation of this particular EV driver’s route choice behavior indicates that the EV user tries to balance the trade-off between travel time and energy consumption. Although more data are needed in order to generalize this finding, this observation could be important and might bring changes to the traffic assignment for future transportation system with a significant share of EVs. Additionally, this research analyzes the relationships among the EV’s power, the vehicle’s velocity, acceleration, and the roadway grade. Based on the analysis results, this paper further proposes an analytical EV power estimation model. The evaluation results using the test vehicle show that the proposed model can successfully estimate EV’s instantaneous power and trip energy consumption. Future research will focus on applying the proposed EV power estimation model to improve EVs’ energy efficiency.  相似文献   

6.
This paper presents an integrated simulator “CUIntegration” to evaluate routing strategies based on energy and/or traffic measures of effectiveness for any Alternative Fuel Vehicles (AFVs). The CUIntegration can integrate vehicle models of conventional vehicles as well as AFVs developed with MATLAB-Simulink, and a roadway network model developed with traffic microscopic simulation software VISSIM. The architecture of this simulator is discussed in this paper along with a case study in which the simulator was utilized for evaluating a routing strategy for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). The authors developed a route optimization algorithm to guide an AFV based on that AFV driver’s choice, which included; finding a route with minimum (1) travel time, (2) energy consumption or (3) a combination of both. The Application Programming Interface (API) was developed using Visual Basic to simulate the vehicle models/algorithms developed in MATLAB and direct vehicles in a roadway network model developed in VISSIM accordingly. The case study included a section of Interstate 83 in Baltimore, Maryland, which was modeled, calibrated and validated. The authors considered a worst-case scenario with an incident on the main route blocking all lanes for 30 min. The PHEVs and EVs were represented by integrating the MATLAB-Simulink vehicle models with the traffic simulator. The CUIntegration successfully combined vehicle models with a roadway traffic network model to support a routing strategy for PHEVs and EVs. Simulation experiments with CUIntegration revealed that routing of PHEVs resulted in cost savings of about 29% when optimized for the energy consumption, and for the same optimization objective, routing of EVs resulted in about 64% savings.  相似文献   

7.
The fact that electric vehicles (EVs) are characterized by relatively short driving range not only signifies the importance of routing applications to compute energy efficient or optimal paths, but also underlines the necessity for realistic simulation models to estimate the energy consumption of EVs. To this end, the present paper introduces an accurate yet computationally efficient energy consumption model for EVs, based on generic high-level specifications and technical characteristics. The proposed model employs a dynamic approach to simulate the energy recuperation capability of the EV and takes into account motor overload conditions to represent the vehicle performance over highly demanding route sections. To validate the simulation model developed in this work, its output over nine typical driving cycles is compared to that of the Future Automotive Systems Technology Simulator (FASTSim), which is a simulation tool tested on the basis of real-world data from existing vehicles. The validation results show that the mean absolute error (MAE) of cumulative energy consumption is less than 45 W h on average, while the computation time to perform each driving cycle is of the order of tens of milliseconds, indicating that the developed model strikes a reasonable balance between efficacy of representation and computational efficiency. Comprehensive simulation results are presented in order to exemplify the key features of the model and analyze its output under specific highly aggressive driving cycles for road gradients ranging from −6% to 6%, in support of its usability as a practical solution for estimating the energy consumption in EV routing applications.  相似文献   

8.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

9.
This paper presents an empirical investigation into platooning on two-lane two-way highways. The main objective is to better understand this phenomenon that has important implications on traffic performance and safety. Field data from three study sites in the state of Montana were used in this study. Separate investigations were performed to examine the relationships among platoon-related variables, namely; time headway, travel speed, and platoon size. The study confirmed that interaction between successive vehicles in the traffic stream generally diminishes beyond a time headway threshold value that fell in the range of 5–7 seconds. Also, the study revealed that very short headways (less than one second) are more associated with aggressive driving and higher speeds than with slow-moving platoons due to lack of passing opportunities. Further, the study found that amount of impedance to traffic is proportional to the size of platoon as evidenced by the relative difference between mean speed of various size platoons and the mean speed of unimpeded vehicles. The study provided other valuable insights into the platooning phenomenon on two-lane highways that are essential in developing a better understanding of traffic operation on two-lane highways.  相似文献   

10.
为解决纯电动汽车存在的制动能量耗损及续航里程不足等问题,通过对行车能量流分析的基础上,提出一种制动能量回收及储能策略,并利用ADVISOR软件建立整车制动能量回收策略仿真模型。选取UDDS城市道路工况进行仿真,结果表明所建立的控制策略可以对制动能量进行回收和储存,对于提高纯电动汽车续航里程提供了理论基础。  相似文献   

11.
Electric vehicles (EVs) are considered as a feasible alternative to traditional vehicles. Few studies have addressed the impacts of policies supporting EVs in urban freight transport. To cast light on this topic, we established a framework combining an optimization model with economic analysis to determine the optimal behavior of an individual delivery service provider company and social impacts (e.g., externalities and welfare) in response to policies designed to support EVs, such as purchase subsidy, limited access (zone fee) to congestion/low-emission zones with exemptions for EVs, and vehicle taxes with exemptions for EVs. Numerical experiments showed that the zone fee can increase the company’s total logistics costs but improve the social welfare. It greatly reduced the external cost inside the congestion/low-emission zone with a high population, dense pollution, and heavy traffic. The vehicle taxes and subsidy were found to have the same influence on the company and society, although they have different effects with low tax/subsidy rates because their different effects on vehicle routing plans. Finally, we performed a sensitivity analysis. Local factors at the company and city levels (e.g., types of vehicle and transport network) are also important to designing efficient policies for urban logistics that support EVs.  相似文献   

12.
In the past few years, vehicular ad hoc networking (VANET) has attracted significant attention and many fundamental issues have been investigated, such as network connectivity, medium access control (MAC) mechanism, routing protocol, and quality of service (QoS). Nevertheless, most related work has been based on simplified assumptions on the underlying vehicle traffic dynamics, which has a tight interaction with VANET in practice. In this paper, we try to investigate VANET performance from the vehicular cyber-physical system (VCPS) perspective. Specifically, we consider VANET connectivity of platoon-based VCPSs where all vehicles drive in platoon-based patterns, which facilitate better traffic performance as well as information services. We first propose a novel architecture for platoon-based VCPSs, then we derive the vehicle distribution under platoon-based driving patterns on a highway. Based on the results, we further investigate inter-platoon connectivity in a bi-directional highway scenario and evaluate the expected time of safety message delivery among platoons, taking into account the effects of system parameters, such as traffic flow, velocity, platoon size and transmission range. Extensive simulations are conducted which validate the accuracy of our analysis. This study will be helpful to understand the behavior of VCPSs, and will be helpful to improve vehicle platoon design and deployment.  相似文献   

13.
Various green driving strategies have been proposed to smooth traffic flow and lower pollutant emissions and fuel consumption in stop-and-go traffic. In this paper, we present a control theoretic formulation of distributed, cooperative green driving strategies based on inter-vehicle communications (IVCs). The control variable is the advisory speed limit, which is designed to smooth a following vehicle’s speed profile without changing its average speed. We theoretically analyze the performance of a constant independent and three simple cooperative green driving strategies and present three rules for effective and robust strategies. We then develop a distributed cooperative green driving strategy, in which the advisory speed limit is first independently calculated by each individual vehicle and then averaged among green driving vehicles through IVC. By simulations with Newell’s car-following model and the Comprehensive Modal Emissions Model (CMEM), we demonstrate that such a strategy is effective and robust independently as well as cooperatively for different market penetration rates of IVC-equipped vehicles and communication delays. In particular, even when 5% of the vehicles implement the green driving strategy and the IVC communication delay is 60 s, the fuel consumption can be reduced by up to 15%. Finally we discuss some future extensions.  相似文献   

14.
Automated highway systems (AHS) are intended to increase the throughput and safety of roadways through computer control, communication and sensing. In the “platoon” concept for AHS, vehicles travel on highways in closely spaced groups. To maximize benefits, it is desirable to form platoons that are reasonably large (five or more vehicles), and it is also desirable to ensure that platoons remain intact for considerable distances. This paper develops and evaluates strategies for organizing vehicles into platoons at highway entrances, with the objective of maximizing the distance that platoons stay intact, so that they do not need to be regrouped into new platoons on the highway itself. Fundamentally, this entails grouping vehicles according to their destination. We evaluate various strategies in which vehicles are sorted on entrance ramps, with respect to platoon sizes, throughput and platoon formation time.  相似文献   

15.
Fuel consumption or pollutant emissions can be assessed by coupling a microscopic traffic flow model with an instantaneous emission model. Traffic models are usually calibrated using goodness of fit indicators related to the traffic behavior. Thus, this paper investigates how such a calibration influences the accuracy of fuel consumption and NOx and PM estimations. Two traffic models are investigated: Newell and Gipps. It appears that the Gipps model provides the closest simulated trajectories when compared to real ones. Interestingly, a reverse ranking is observed for fuel consumption, NOx and PM emissions. For both models, the emissions of single vehicles are very sensitive to the calibration. This is confirmed by a global sensitivity analysis of the Gipps model that shows that non-optimal parameters significantly increase the variance of the outputs. Fortunately, this is no longer the case when emissions are calculated for a group of many vehicles. Indeed, the mean errors for platoons are close to 10% for the Gipps model and always lower than 4% for the Newell model. Another interesting property is that optimal parameters for each vehicle can be replaced by the mean values with no discrepancy for the Newell model and low discrepancies for the Gipps model when calculating the different emission outputs. Finally, this study presents preliminary results that show that multi-objective calibration methods are certainly the best direction for future works on the Gipps model. Indeed, the accuracy of vehicle emissions can be highly improved with negligible counterparts on the traffic model accuracy.  相似文献   

16.
Conceptually, a Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles, allowing them to pass through an intersection during the green interval. In previous papers, a single speed is computed for each vehicle in a range between acceptable minimum and maximum values (for example between standstill and the speed limit). This speed is assumed to be constant until the beginning of the green interval, and sent as advice to the vehicle. The goal is to optimise for a particular objective, whether it be minimisation of emissions (for environmental reasons), fuel usage or delay. This paper generalises the advice given to a vehicle, by optimising for delay over the entire trajectory instead of suggesting an individual speed, regardless of initial conditions – time until green, distance to intersection and initial speed. This may require multiple acceleration manoeuvres, so the advice is sent as a suggested acceleration at each time step. Such advice also takes into account a suitable safety constraint, ensuring that vehicles are always able to stop before the intersection during a red interval, thus safeguarding against last-minute signal control schedule changes. While the algorithms developed primarily minimise delay, they also help to reduce fuel usage and emissions by conserving kinetic energy. Since vehicles travel in platoons, the effectiveness of a GLOSA system is heavily reliant on correctly identifying the leading vehicle that is the first to be given trajectory advice for each cycle. Vehicles naturally form a platoon behind this leading vehicle. A time loop technique is proposed which allows accurate identification of the leader even when there are complex interactions between preceding vehicles. The developed algorithms are ideal for connected autonomous vehicle environments, because computer control allows vehicles’ trajectories to be managed with greater accuracy and ease. However, the advice algorithms can also be used in conjunction with manual control provided Vehicle-to-Infrastructure (V2I) communication is available.  相似文献   

17.
In this paper, acceleration-based connected cruise control (CCC) is proposed to increase roadway traffic mobility. CCC is designed to be able to use acceleration signals received from multiple vehicles ahead through wireless vehicle-to-vehicle (V2V) communication. We consider various connectivity structures in heterogeneous platoons comprised of human-driven and CCC vehicles. We show that inserting a few CCC vehicles with appropriately designed gains and delays into the flow, one can stabilize otherwise string unstable vehicle platoons. Exploiting the flexibility of ad-hoc connectivity, CCC can be applied in a large variety of traffic scenarios. Moreover, using acceleration feedback in a selective manner, CCC provides robust performance and remains scalable for large systems of connected vehicles. Our conclusions are verified by simulations at the nonlinear level.  相似文献   

18.
Length-based vehicle classification is an important topic in traffic engineering, because estimation of traffic speed from single loop detectors usually requires the knowledge of vehicle length. In this paper, we present an algorithm that can classify vehicles passing by a loop detector into two categories: long vehicles and regular cars. The proposed algorithm takes advantage of event-based loop detector data that contains every vehicle detector actuation and de-actuation “event”, therefore time gaps between consecutive vehicles and detector occupation time for each vehicle can be easily derived. The proposed algorithm is based on an intuitive observation that, for a vehicle platoon, longer vehicles in the platoon will have relatively longer detector occupation time. Therefore, we can identify longer vehicles by examining the changes of occupation time in a vehicle platoon. The method was tested using the event-based data collected from Trunk Highway 55 in Minnesota, which is a high speed arterial corridor controlled by semi-actuated coordinated traffic signals. The result shows that the proposed method can correctly classify most of the vehicles passing by a single loop detector.  相似文献   

19.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

20.
The paper presents an algorithm for matching individual vehicles measured at a freeway detector with the vehicles’ corresponding measurements taken earlier at another detector located upstream. Although this algorithm is potentially compatible with many vehicle detector technologies, the paper illustrates the method using existing dual-loop detectors to measure vehicle lengths. This detector technology has seen widespread deployment for velocity measurement. Since the detectors were not developed to measure vehicle length, these measurements can include significant errors. To overcome this problem, the algorithm exploits drivers’ tendencies to retain their positions within dense platoons. The otherwise complicated task of vehicle reidentification is carried out by matching these platoons rather than individual vehicles. Of course once a vehicle has been matched across neighboring detector stations, the difference in its arrival time at each station defines the vehicle’s travel time on the intervening segment.Findings from an application of the algorithm over a 1/3 mile long segment are presented herein and they indicate that a sufficient number of vehicles can be matched for the purpose of traffic surveillance. As such, the algorithm extracts travel time data without requiring the deployment of new detector technologies. In addition to the immediate impacts on traffic monitoring, the work provides a means to quantify the potential benefits of emerging detector technologies that promise to extract more detailed information from individual vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号