首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高速铁路短期客流预测是铁路运输系统的重要组成部分。无论是对列车开行方案的制定,还是对如何采取正确的营销策略,都具有重大的现实意义。通过混合经验模态分解方法和神经网络方法相结合的EMD-BPN方法来预测高速铁路短期客流量。组合方法主要分为三步:首先,使用经验模态分解方法将客流时间序列分解;其次,将IMFs作为BP神经网络的输入;最后,应用神经网络对客流量做出预测。数值实例表明,该方法对于高速铁路短期客流预测在精度和稳定性上都有良好的表现。  相似文献   

2.
高速铁路短期客流预测是铁路运输系统的重要组成部分。无论是对列车开行方案的制定,还是对如何采取正确的营销策略,都具有重大的现实意义。通过混合经验模态分解方法和神经网络方法相结合的EMD-BPN方法来预测高速铁路短期客流量。组合方法主要分为三步:首先,使用经验模态分解方法将客流时间序列分解;其次,将IM Fs作为BP神经网络的输入;最后,应用神经网络对客流量做出预测。数值实例表明,该方法对于高速铁路短期客流预测在精度和稳定性上都有良好的表现。  相似文献   

3.
4.
本研究针对现有边坡沉降预测模型精度低、无法有效反映沉降值蕴含的时序信息等问题,提出基于门控深度循环信念网络(GDRBN)的边坡沉降混合预测模型。为提高训练效率,引入自适应学习率,并以广佛肇高速公路二期工程为实例,建立多种边坡沉降预测模型,并进行计算比较。研究结果表明:基于GDRBN的边坡预测模型的预测精度比GM、BP、RNN、DBN预测模型的分别提高了69%、54%、38%、26%,可为边坡预测提供更准确的计算方法。  相似文献   

5.
6.
为克服循环神经网络和基于预定义图的图卷积神经网络的局限性,捕获交通数据中复杂的时空相关性,实现准确的高速公路流量预测,提出一种自适应图注意力网络模型。该模型整合节点自适应参数学习模块、自适应邻接矩阵生成模块和门控循环单元,以捕获路网交通数据中复杂的时空相关性。同时,为解决循环神经网络难以捕获长期的时间相关性和产生信息损失的问题,设计了一个转换注意力层以建模未来时间步信息与历史多个时间步信息的相关性。最后,基于桂林市高速公路网的真实交通数据试验,验证了所提出方法的有效性。  相似文献   

7.
8.
短时客流预测可为轨道交通运营部门规划调度提供参考,其中短时客流预测的精准性尤为重要,为进一步提高城市轨道站点短时客流预测精准性,提出一种结合集合经验模式分解算法和贝叶斯优化算法的改进LSTM方法。先使用集合经验模式分解算法(EEMD)对地铁站点的客流数据进行分解,以减少数据噪声干扰;再通过贝叶斯优化算法(BOA)对长短时记忆神经网络(LSTM)的超参数进行优化,从而提高模型的参数精确性。采用真实的客流数据验证结果表明:相较于单一LSTM以及单层组合模型,双重叠加后的EEMD-BOA-LSTM组合模型预测结果平均绝对误差降低21.8%~44.8%,均方根误差降低16.9%~47.4%,对短时客流的预测结果误差改善显著。  相似文献   

9.
10.
采用参数自适应扩展卡尔曼滤波,建立了隧道周边位移预测模型。基于预测残差特性,评价滤波的敛散性。对模型参数进行实时修正,抑制滤波发散,保证了滤波精度。通过滤波预测值与实测值对比,判断预测模型的适用性;比较标准型与参数自适应型的预测残差,以判断何种预测方法的更优。分析结果表明:参数自适应型能有效抑制滤波发散,较为适用,预测效果较好。  相似文献   

11.
针对航班运行风险可靠预测方案,以某航空公司2016-2018 年航班运行风险数据为基准,通过相空间重构,序列混沌特征的识别,构建基于极端学习机(ELM)的航班运行风险混沌短期预测模型,基于集成经验模态分解(EEMD)阈值降噪方法进行改进;最后,计算风险预测结果,分析不同方式下的预测精度. 结果表明:航班运行风险时间序列具有混沌特征, EEMD方法可抑制序列本征模态函数(IMF)的模态混叠现象;经由EEMD阈值降噪处理后,短期预测结果的修正平均绝对百分误差(MAPE)值显著下降. 证实本文航班运行风险预测方案可行且有效.  相似文献   

12.
开挖边坡岩土体位移及变形分析中的随机介质理论   总被引:1,自引:0,他引:1  
提出了用岩土体的变形表示岩土体强度的随机介质理论方法,分析了边坡工程应用随机介质理论的原理及基本方程,获得了由开挖边坡工程引起地表及岩土体内部移动及变形的分析公式,探讨了计算参数的选择,并通过工程实例,验证了其可靠性。从而对莫尔-库仑准则作为滑坡判据的极限平衡分析法和应力-应变数值分析法有所突破。  相似文献   

13.
基坑坡顶水平位移预测对基坑安全施工具有重要意义。以昆山市建滔广场花桥一期工程为例,结合BP神经网络模型和时间序列ARMA模型各自特性,建立了基于灰色关联度的线性组合模型预测其坡顶水平位移。实例分析表明组合模型可以在保证较好的预测精度的前提下,提高了预测的整体性,具有工程实用价值。  相似文献   

14.
为充分挖掘交通流量的复杂时空动态相关性以提高交通流量预测精度,引入空间注意力机制与膨胀因果卷积神经网络,提出一种基于时空注意力卷积神经网络的交通流量预测模型(spatio-temporal attention convolutional neural network,STACNN).首先,由膨胀因果卷积与门控单元构建的门控时间卷积网络模块用于获取交通流量的非线性时间动态相关性,避免在训练长时间序列时发生梯度消失或梯度爆炸;其次,采用空间注意力机制为路网中的交通传感器节点自动分配注意力权重,动态关注不相邻节点之间的空间关系,并结合图卷积神经网络提取路网的局部空间动态相关性特征;然后,通过全连接层获取最终的交通流量预测结果;最后,利用高速公路交通数据集PEMSD4、PEMSD8进行了60 min的交通流量预测实验.实验结果表明:与基线模型中具有良好性能的时空图卷积网络(spatio-temporal graph convolutional network,STGCN)模型相比,提出的STACNN模型预测结果的平均绝对误差(mean absolute error,MAE)在两个数据集上分别提...  相似文献   

15.
采用Shepard方法生成包络线,得到了一种新的EMD算法.引入了Shepard方法及性质,从数学角度解释了选择该算法的原因,最后针对噪声信号给出了仿真结果,表明了该算法的有效性.  相似文献   

16.
针对基于深度学习的短期交通流预测问题,揭示了时空相关性建模本质,分析了建模过程中涉及的多尺度时空特性、异质性、动态性、非线性等特点,明确了基于深度学习进行短期交通流预测的核心挑战,阐述了短期交通流预测涉及的外部信息整合、多步预测与单步预测以及单体预测与集成预测等相关问题;按照网格化和拓扑化2种交通流数据组织方式,分别综述了当前最新的基于深度学习的短期交通流预测研究方向。研究结果表明:针对网格化交通流数据,当前研究主要包含了基于2D图像卷积神经网络、基于2D图像卷积神经网络与循环神经网络相结合、基于3D图像卷积神经网络3种预测建模方法;针对拓扑化交通流数据,当前研究主要包含了基于1D因果图像卷积与卷积图神经网络相结合、基于循环神经网络与卷积图神经网络相结合、基于自注意力与卷积图神经网络相结合、基于卷积图神经网络的时空同步学习4种预测建模方法;总体上,基于深度学习方法进行短期交通流预测相较于采用时间序列和经典机器学习方法获得了预测准确性上的极大提升;未来,针对物理理论、知识图谱与深度学习相结合,构建多时空数据挖掘大模型以及轻量化、可解释性、模型结构自动化搜索等维度的相关探索将成为重要研究方...  相似文献   

17.
采用Shepard方法生成包络线,得到了一种新的EMD算法.引入了Shepard方法及性质,从数学角度解释了选择该算法的原因,最后针对噪声信号给出了仿真结果,表明了该算法的有效性.  相似文献   

18.
【目的】针对滚动轴承微弱故障难以识别的问题,提出了一种基于MR-DCA的滚动轴承故障诊断方法。【方法】利用最大相关峭度解卷积以及共振稀疏分解的方法对输入样本进行预处理,可以有效地滤除原信号中的噪声,突出故障冲击成分。将所获得的故障分量的二维时频图以及原始信号作为网络的训练样本,经两个特征学习模块后,使用注意力机制对输入特征进行筛选,通过权值重分配可以有效地提高模型计算效率和识别精度。为了验证模型性能,使用某大学的滚动轴承微弱故障数据进行故障诊断分析,同时开展消融实验,对诊断模型各个模块的有效性进行验证。【结果】结果表明,所提出的方法识别准确率更高,且具有更快的训练速度和迭代速度。【结论】所提模型在进行滚动轴承微弱故障诊断时可以实现良好的诊断性能。  相似文献   

19.
由于风电存在着不确定性,风电功率预测对于接入大量风电的电力系统意义重大.为了提高风电功率的预测精度,本文建立了基于经验模式分解法(EMD)与支持向量机(SVM)的复合预测模型.考虑到风力机组的输出有很强的非线性,该模型首先将训练数据按风速大小分成高、中、低3组,然后对各组的风电功率样本序列进行经验模式分解,并建立各个频带分量的支持向量机预测模型,各模型的预测结果等权求和即得到最终的功率预测值.使用风电场现场采集数据的预测结果,验证了该方法的可行性和有效性.  相似文献   

20.
针对现有基于CNN、GRU及CNN-LSTM的船舶轨迹预测模型精度不高、运行时间较长等问题,提出一种基于卷积神经网络(Convolutional Neural Networks, CNN)和门控循环单元(Gated Recurrent Unit, GRU)的船舶轨迹预测混合模型(CNN-GRU).构建了基于船舶AIS信息的船舶轨迹特征表达方法,以目标船舶连续4个时刻的轨迹特征值作为输入,以第5个时刻轨迹特征值作为输出,训练构建的CNN-GRU轨迹预测网络,对未来船舶轨迹进行预测,并与现有模型进行对比.实例验证表明:CNN-GRU模型的预测精度显著提升,经度误差不超过3×10-5(°),纬度误差不超过5.5×10-4(°),相较于CNN-LSTM模型,预测效率显著提高,运行时间减少19.1 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号