首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
混合动力动车组制动系统的常用制动采用电制动和空气制动两种制动力实现方式。由于3辆编组,编组少,制动减速度要求大,最大常用制动平均减速度不低于1.0m/s~2(一般为0.8m/s~2),拖车在常用制动时仅有3个轴施加制动力,其中一轴为参考轴,相当于损失掉1/12,而且站间距短制动间隔短,不能超过制动轮盘及闸片的热容量等参数的要求。因此文中研究出混合动力动车组制动系统常用制动(1~7级)各级位下电制动力和空气制动力进行复合分配的策略,而且根据牵引电机的特性曲线合理设计出各级制动力对应的减速度,并且解决了纯空气制动时任何工况下不会超过制动盘和闸片的热负荷能力的要求。  相似文献   

2.
针对动车组部分车辆制动系统故障后,采取切除故障车辆制动力的处理方式,从安全防护曲线的生成与实际制动过程的角度出发,对在完全监控模式下的列车防护算法及制动过程进行仿真。分析单限速区段和多限速区段速度防护曲线的算法和切除部分制动力后实际制动曲线与速度防护曲线的关系,找到触发各类制动的转换点,对切除不同比例制动力后实际制动曲线进行仿真,得出不同坡度和制动初速度下、切除不同比例制动力时的制动距离。针对动车组因故障切除部分制动力后,产生过走距离,存在冒进信号点的可能,参照防护曲线生成机理,给出兼顾制动力故障的ATP安全防护方法,分析按该方法运行时对通过能力的影响。  相似文献   

3.
对地铁车辆制动系统的基本特性进行了介绍,分析了影响ATO(列车自动运行)控车精度的车辆性能参数,阐述了电空制动转换过程中控制参数的调整和优化方法。以南京地铁3号线车辆制动系统特性的优化为研究对象,通过对电空制动转换速度点、电制动延迟退出时间、电制动退出斜率等控制参数进行优化,以及对电空制动转换后的空气制动力目标值进行削减,使得整个电空制动转换过程中不再存在制动力叠加的现象,制动减速度曲线亦无明显波动,从而使制动系统的特性更加稳定。  相似文献   

4.
分析了在高速动车组制动系统中增加线性涡流制动后,涡流制动力和空气制动力的分配原则。接着讨论了基于试验数据建立钢轨温升和闸片磨耗数学模型的方法。基于经验公式以减少钢轨温升和减少闸片磨耗为目标,提出一种分配涡流制动力和空气制动力的优化控制策略。通过优化计算,给出了涡流制动力和空气制动力的分配关系。  相似文献   

5.
综述了日本新干线车辆用基础制动装置。着重介绍了基础制动装置的结构改进过程及改进的部位。此外,也较详细地阐述了制动控制的技术动向。对编组制动力控制、滑行再粘着控制、减速度控制等控制技术的应用与发展前景做了描述。  相似文献   

6.
上海明珠线地铁车辆空气制动系统   总被引:2,自引:0,他引:2  
黄文杰 《铁道车辆》2004,42(7):7-11,15
介绍了上海明珠线地铁车辆空气制动系统的主要技术特征和参数,阐明了空气制动系统的控制原理、制动力分配原则、空气制动管路系统和电空混合制动的实现方法。  相似文献   

7.
电磁涡流制动由于其不受列车黏着限制且衰减较小的优点,常用作高速列车的制动装置,但其结构尺寸和质量较大,磁极温升较高,阻碍了进一步推广应用。因此,在电磁涡流制动装置的基础上提出永磁涡流制动方案,结合理论计算和仿真分析,对比了相同极距和结构尺寸的2种涡流制动装置的气隙磁场,得出涡流制动力与气隙磁场的关系;计算了相同结构尺寸下永磁涡流制动和电磁涡流制动装置制动力和吸引力大小随速度的变化,同时对比分析了2种装置的磁极平均温度随速度的变化。研究结果表明,永磁涡流制动和电磁涡流制动的制动力计算方式具有等效性,相同结构下永磁涡流制动的制动力可达标准励磁参数下电磁涡流制动制动力的3.29倍,制动力相同时永磁涡流制动的磁极温升更小。  相似文献   

8.
列车制动的几种方式   总被引:3,自引:0,他引:3  
博科 《铁道知识》2003,(3):34-35
制动就是对运动着的物体施加外力,转移物体的动能,使物体降低速度或停止运动。若使行驶中的机车、车辆降低速度或停止,就要采取制动措施。为了实施制动,在每一机车、车辆上都要安装制动装置。制动时制动装置具有两个功能:一是通过制动装置形成制动力,阻止列车运动;二是通过制动装置进行能量转移,将运行列车的动能转变为其他形式的能量。随着列车动能的转移和减少,列车将减速或停车。 制动力形成的方式 制动力形成的方式可分为两类:粘着制动和非粘着制动。 制动力由钢轨通过轮轨滚动接触点作用于车辆的制动方式,叫做粘着制动,也称摩擦制动。粘着制动时,制动力受轮轨间的粘着力的限制。其可能实现  相似文献   

9.
利用高速轮轨关系试验台,接入制动气路设备,建立试验台与制动防滑器间的信号和指令传递,进行高速制动防滑试验。首先,采用电惯量模拟的方式,实现制动条件下试验台轨道轮的运动惯量与实车试验车辆轴重的运动惯量一致,通过控制轨道轮的圆周速度,使试验台试验车速与实车试验车速保持一致,并将其作为防滑控制系统的参考速度;然后,依据试验台制动防滑试验流程,通过干燥条件下的纯空气紧急制动试验结果对试验方法的可靠性进行验证;在此基础上,试验某动车组制动防滑器在200和300 km·h-1制动初速度及在喷水和喷防冻液条件下的制动防滑特性。结果表明:干燥条件下的纯空气紧急制动试验,实际减速度与目标减速度基本吻合,试验台试验的制动距离较实车试验的相对误差满足标准要求,试验方法可靠;喷水条件下,制动初速度为200 km·h-1时初始滑行阶段的制动率更高,而喷防冻液条件下,制动初速度为300 km·h-1时初始滑行阶段的制动率更高;喷防冻液条件下的轮轨黏着利用比喷水条件下更充分,制动率更高,制动距离更短。  相似文献   

10.
微机控制直通电空制动系统控制模式分析   总被引:1,自引:0,他引:1  
由于新型城市轨道交通动车组的一些特点,在其减速或停车过程中,动能的转移方式除摩擦制动外,更多地采用各种动力制动形式.因此,在列车制动控制技术上,仅采用空气制动机已不可能满足要求,目前一般采用微机控制直通电空制动系统.该系统既具有直通空气制动响应迅速、控制灵活的特点,又包含电空制动列车前后制动作用一致的良好性能,并能使各种动力制动力和空气制动力得到有机的协调控制.  相似文献   

11.
新开发设计的电空制动试验台数据采集系统能与BCU(制动控制单元)以相同的工作周期进行采集,根据不同的车型将与制动有关的参数以及采集的压力等进行实时计算、仿真制动效果。得到制动过程中列车的减速度、速度、轴制动功、轴功率、总制动力和制动距离等,还能以曲线图表示,并存成数据文件。  相似文献   

12.
提速客车制动技术(4)   总被引:1,自引:0,他引:1  
15 制动粘着系数 15.1 影响制动粘着系数的因素及各国制动粘着系数 列车的制动过程实际上就是施加的制动力和外界给车辆的粘着力达到平衡的过程,只要施加在轮对上的制动力不大于粘着力则车辆的轮对不会被抱死,就不会产生滑行.反之,轮对被抱死则会产生滑行.当车辆设计定型后,车辆的各级制动力就不会改变了,也就是说在制动过程中车辆的制动力就不能随着轮轨的制动粘着情况来改变了.而轮轨之间的粘着力则时刻随轮轨接触面的状态、轴重转移等因素而变化.  相似文献   

13.
前言近代,由于汽車行駛速度的提高,其所采用的高功率的盘形制动装置获得了好評。铁道車辆的高速运行,十年来也导致了盘形制动装置的发展。根据动能公式(1/2mv~2),当制动力保持不变时,制动距离随速度的平方而增加。但在铁路运营中,远距离信号与基本信号的距离限制了制动距离,因而在一定程度上也限制了运行速度。如欲提高运行速度,則須增加远距离信号与基本信号的距离,或加大制动力。和近郊快車相同,在长途交通中,加大制动力的問題,也曾一再向設計师們提出。为了提高压縮空气摩擦制动装置的制动力,应考虑一系列构造上的可能性:閘瓦块分段的閘瓦或双閘瓦块組成一閘瓦,以  相似文献   

14.
基于涡流制动原理建立涡流制动力的数学模型,并利用ANSYS Maxwell软件建立LECB(线性涡流制动)三维仿真模型。根据控制变量法研究列车速度、气隙、励磁电流等因素对涡流制动特性的影响,并分析了常用制动和紧急制动工况下的电磁特性。研究结果表明:线性涡流制动力受速度的影响明显,低速时制动力快速上升并达到幅值,然后随着速度的增加,制动力下降并趋于平稳;励磁电流、励磁线圈匝数与线性涡流制动力成正相关,气隙、钢轨材料电导率与线性涡流制动力成负相关;相同条件下,励磁线圈材料为铝时,线性涡流制动系统产生的制动力大小优于励磁线圈材料为铜时产生的制动力。  相似文献   

15.
200km/h电动车组要求采用动力分散型式,运行速度为200km/h,最高速度250km/h。制动系统为复合制动模式,由控制系统、动力制动系统、空气制动系统和微处理器控制的防滑器等组成。文中分析计算了制动参数、粘着系数的选择以及各制动方式的配合,对动车组的制动系统提出了具体建议。  相似文献   

16.
目前电力机车多采用空电联合制动,而较少采用空电混合制动。文章以悉尼地铁工程车为例,设计了一种基于UIC标准制动系统的空电混合制动控制方案,详细介绍了其系统组成及工作原理,并分析研究了空电混合制动的激活条件和控制逻辑,以及在几种不同典型制动工况下空气制动与电制动的分配情况。经试验验证,各工况下的制动力分配都满足设计要求。  相似文献   

17.
一次制动模式参数选择   总被引:1,自引:0,他引:1  
通过研究减速度法,考虑实际应用情况,根据在额定减速度和变减速度2种制动模式下的不同初速度,计算对应的制动总距离;通过Matlab编程仿真关于速度一距离的模式曲线;最后,验证了在几种车型上的实际应用情况。  相似文献   

18.
目的:为解决现有轨道交通车辆用弹簧停放制动装置存在停放制动力大小不稳定、停放制动力随弹簧疲劳而衰减、机械结构复杂等问题,设计了一种新型空气停放制动系统。方法:介绍了弹簧停放制动系统的结构组成及功能原理,分析了其系统特性;介绍了空气停放制动系统结构组成及功能原理;分析了新型空气停放系统的特性。结果及结论:所提新型空气停放制动系统能够改变行车制动缸的工作模式,将制动缸的输出力转变为停放制动力。当向停放缸充入压缩空气时,停放缸内部弹簧被压缩,使停放缸与拉杆保持分离,同时非自锁螺纹也保持在解锁状态,此时制动缸具备行车制动和行车制动缓解功能。当停放缸内无压缩空气时,停放缸与拉杆保持压紧,同时非自锁螺纹被单向锁死,此时停放缸将制动缸锁定在最大行程处无法退回,实现停放制动作用。在行车制动控制模块和停放制动控制模块之间安装双向阀,双向阀的出口与制动缸连通,停放制动控制模块的另一出口与停放缸连通。在施加停放制动时,充入制动缸内的压缩空气由停放制动控制模块提供。该系统可实现全列车所有空气停放复合制动装置的停放制动力大小一致,也可根据需要灵活调节单个停放制动力的大小,还可保持停放制动力的长期稳定,避免了现有...  相似文献   

19.
为制定在特殊天气情况下(雾、雾霾)列车出库时的应急预案,以及准确掌握列车在不同初速度下的紧急制动距离,在试车线对西安地铁1、2号线车辆在不同初速度下的紧急制动距离进行测试。对测试结果进行理论分析与现场验证,得出:在制动系统相同的情况下,制动初速度越大,空走时间对制动减速度的影响就越小,平均减速度越接近瞬时减速度,在同等制动级位下,纯空气制动和电控混合制动虽然均满足减速度要求,但减速度值大小不尽相同;在制动系统不同的情况下,制动供货商设计和确定的系统减速度下限值、闸瓦材质、空走时间、所选的理论计算模型,以及外界测试工况对制动减速度和制动距离均有影响。  相似文献   

20.
针对高速列车或城市轨道交通列车高精度停车距离的要求,依靠ATP或司机根据前方停车距离不断修正制动指令来实施停车制动这一方法大多情况下是有效的,但是对于弯道和坡道等特殊情况下的制动,这一方法难以满足要求.为了更好地在各种路况下精确停车,本文首先对目前各列车制动控制模式进行比较,并分析各自不足,提出减速度控制方法;分析减速度控制采用车体减速度的必要性,并分析建立了直线下坡道以及下坡道和弯道同时存在情况下减速度计算模型,运用Matlab软件对模型进行了计算.计算结果表明:制动减速度可以用列车绝对纵向减速度近似代替.这一结果为减速度控制中减速度的获取提供了理论依据.最后对减速度控制作了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号