首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fundamental to the operation of most currently envisioned Intelligent Vehicle-Roadway System (IVRS) projects are advanced systems for surveillance, control and management of integrated freeway and arterial networks. A major concern in the development of such Smart Roads, and the focus of this paper, is the provision of decision support for traffic management center personnel, particularly for addressing nonrecurring congestion in large or complex networks. Decision support for control room staff is necessary to effectively detect, verify and develop response strategies for traffic incidents. The purpose of this paper is to suggest a novel artificial intelligence-based solution approach to the problem of providing operator decision support in integrated freeway and arterial traffic management systems, as part of a more general IVRS. A conceptual design is presented that is based on multiple real-time knowledge-based expert systems (KBES) integrated by a distributed blackboard problem-solving architecture. The paper expands on the notions of artificial intelligence and Smart Roads, and in particular the role, characteristics and requirements of KBES for real-time decision support. The overall concept of a decision support architecture is discussed and the blackboard approach is defined. A conceptual design for the proposed distributed blackboard architecture is presented, and discussed in terms of the component KBES functions at an areawide level, as well as the subnetwork or individual traffic control center level.  相似文献   

2.
3.
Abstract

Car-following (CF) models are fundamental in the replication of traffic flow and thus they have received considerable attention. This attention needs to be reflected upon at particular points in time. CF models are in a continuous state of improvement due to their significant role in traffic micro-simulations, intelligent transportation systems and safety engineering models. This paper presents a review of existing CF models. It classifies them into classic and artificial intelligence models. It discusses the capability of the models and potential limitations that need to be considered in their improvement. This paper also reviews the studies investigating the impacts of heavy vehicles in traffic stream and on CF behaviour. The findings of the study provide promising directions for future research and suggest revisiting the existing models to accommodate different behaviours of drivers in heterogeneous traffic, in particular, heavy vehicles in traffic.  相似文献   

4.
Traffic Related Air Pollution (TRAP) studies are usually investigated using different categories such as air pollution exposure for health impacts, urban transportation network design to mitigate pollution, environmental impacts of pollution, etc. All of these subfields often rely on a robust air pollution model, which also necessitates an accurate prediction of future pollutants. As is widely accepted by the heath authorities, TRAP is considered to be the major health issue in urban areas, and it is difficult to keep pollution at harmless levels if the time sequenced dynamic pollution and traffic parameters are not identified and modelled efficiently. In our work here, artificial intelligence techniques, such as Bayesian Networks with an optimized configuration, are used to deliver a probabilistic traffic data analysis and predictive modelling for air pollution (SO2, NO2 and CO) at very local scale of an urban region with up to 85% accuracy. The main challenge for traditional data analysis is a lack of capability to reveal the hidden links between distant data attributes (e.g. pollution sources, dynamic traffic parameters, etc.), whereas some subtle effects of these parameters or events may play an important role in pollution on a long-term basis. This study focuses on the optimisation of Bayesian Networks to unveil hidden links and to increase the prediction accuracy of TRAP considering its further association with a predictive GIS system.  相似文献   

5.
ATCEM: a synthetic model for evaluating air traffic complexity   总被引:1,自引:0,他引:1  
Air traffic complexity, which measures the disorder of air traffic distribution, has become the critical indicator to reflect air traffic controller workload in air traffic management (ATM) system. However, it is hard to assess the system accurately because there are too many correlated factors, which make the air traffic complexity nonlinear. This paper presents an air traffic complexity evaluation model with integrated classification using computational intelligence (ATCEM). To avoid redundant factors, critical factors contributing to complexity are analyzed and selected from numerous factors in the ATCEM. Subsequently, to construct the mapping relationship between selected factors and air traffic complexity, an integrated classifier is built in ATCEM. With efficient training and learning based on aviation domain knowledge, the integrated classifier can effectively and stably reflect the mapping relationship between selected factors and the category of air traffic complexity to ensure the precision of the evaluation. Empirical studies using real data of the southwest airspace of China show that the ATCEM outperforms a number of state‐of‐the‐art models. Moreover, using the critical complexity factors selected in ATCEM, the air traffic complexity could be effectively estimated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the effects of different strategies that might be considered to reduce the impact made by road traffic on air pollution in London. The management of road traffic in large urban areas is one of many options being considered to reduce pollutant emissions to meet statutory air pollution objectives. Increasingly, the concept of a low emission zone (LEZ) is being proposed as a means of achieving this reduction. An assessment has been made of different LEZ scenarios in central London, which involve reducing traffic flow or modifying the vehicle technology mix. Methods of predicting annual mean nitrogen dioxide concentrations utilising comprehensive traffic data and air pollution measurements have been used to develop empirical prediction models. Comparisons with statutory air pollution objectives show that significant action will be required to appreciably decrease concentrations of nitrogen dioxide close to roads. The non-linear atmospheric chemistry leading to the formation of nitrogen dioxide, results in a complex relationship between vehicle emissions and ambient concentrations of the pollutant. We show that even ambitious LEZ scenarios in central London produce concentrations of nitrogen oxides that are achieved through a “do nothing” scenario only five years later.  相似文献   

7.
Aircraft noise has been regarded as one of the major environmental issues related to air transport. Many airports have introduced a variety of measures to reduce its impact. Several air traffic assignment strategies have been proposed in order to allocate noise more wisely. Even though each decision regarding the assignment of aircraft to routes should consider population exposure to noise, none of the air traffic assignment strategies has addressed daily migrations of population and number of people exposed to noise. The aim of this research is to develop a mathematical model and a heuristic algorithm that could assign aircraft to departure and arrival routes so that number of people exposed to noise is as low as possible, taking into account temporal and spatial variations in population in an airport’s vicinity. The approach was demonstrated on Belgrade airport to show the benefits of the proposed model. Numerical example showed that population exposure to noise could be reduced significantly by applying the proposed air traffic assignment model. As a consequence of the proposed air traffic assignment, overall fuel consumption increased by less than 1%.  相似文献   

8.
Urban traffic corridors are often controlled by more than one agency. Typically in North America, a state of provincial transportation department controls freeways while another agency at the municipal or city level controls the nearby arterials. While the different segments of the corridor fall under different jurisdictions, traffic and users know no boundaries and expect seamless service. Common lack of coordination amongst those authorities due to lack of means for information exchange and/or possible bureaucratic ‘institutional grid-lock’ could hinder the full potential of technically-possible integrated control. Such institutional gridlock and related lack of timely coordination amongst the different agencies involved can have a direct impact on traffic gridlock. One potential solution to this problem is through integrated automatic control under intelligent transportation systems (ITS). Advancements in ITS and communication technology have the potential to considerably reduce delay and congestion through an array of network-wide traffic control and management strategies that can seamlessly cross-jurisdictional boundaries. Perhaps two of the most promising such control tools for freeway corridors are traffic-responsive ramp metering and/or dynamic traffic diversion possibly using variable message signs (VMS). Technically, the use of these control methods separately might limit their potential usefulness. Therefore, integrated corridor control using ramp metering and VMS diversion simultaneously might be synergetic and beneficial. Motivated by the above problem and potential solution approach, the aim of the research presented in this paper is to develop a self-learning adaptive integrated freeway-arterial corridor control for both recurring and non-recurring congestion. The paper introduces the use of reinforcement learning, an Artificial Intelligence method for machine learning, to provide optimal control using ramp metering and VMS routing in an integrated agent for a freeway-arterial corridor. Reinforcement learning is an approach whereby the control agent directly learns optimal strategies via feedback reward signals from its environment. A simple but powerful reinforcement learning method known as Q-learning is used. Results from an elaborate simulation study on a key corridor in Toronto are very encouraging and discussed in the paper.  相似文献   

9.
Abstract

Congestion at motorway junctions is a traffic phenomenon that degrades operation of infrastructure and can lead to breakdown of traffic flow and associated reduction in capacity. Advanced communication technologies open new possibilities to prevent or at least delay this phenomenon, and innovative active traffic management systems have been developed in the recent years for better control of motorway traffic. This paper presents a review of control strategies for facilitating motorway on-ramp merging using intelligent vehicles. First, the concepts of the control algorithms are reviewed chronologically divided into three types of intelligent vehicle: completely automated, equipped with cooperative adaptive cruise control and equipped with on-board display. Then, a common structure is identified, and the algorithms are presented based on their characteristics in order to identify similarities, dissimilarities, trends and possible future research directions. Finally, using a similar approach, a review of the methods used to evaluate these control strategies identifies important aspects that should be considered by further research on this topic.  相似文献   

10.
With the recent advances in communications and information technology, real-time traffic routing has emerged as a promising approach to alleviating congestion. Existing approaches to developing real-time routing strategies, however, have limitations. This study examines the potential for using case-based reasoning (CBR), an emerging artificial intelligence paradigm, to overcome such limitations. CBR solves new problems by reusing solutions of similar past problems. To illustrate the feasibility of the approach, the study develops and evaluates a prototype CBR routing system for the interstate network in Hampton Roads, Virginia. Cases for building the system’s case-base are generated using a heuristic dynamic traffic assignment (DTA) model designed for the region. Using a second set of cases, the study evaluates the performance of the prototype system by comparing its solutions to those of the DTA model. The evaluation results demonstrate that the prototype system is capable of running in real-time, and of producing high quality solutions using case-bases of reasonable size.  相似文献   

11.
This paper addresses the feasibility of measuring induced traffic by means of appropriately designed surveys. The problems which confront any attempt to measure induced traffic are described and discussed. They include: inherent variability of traffic data, difficulty in establishing what would have happened in the absence of the scheme, uncertainties in the attribution of cause and difficulty in determining the most appropriate time to conduct surveys. Some of these problems have no solution while others can be reduced with an appropriate programme of surveys and control studies. Calculations are made of the sample sizes required to achieve various levels of target accuracy. It is concluded that, given an appropriate programme of traffic counts including control studies and extensive screenlines, it should be possible at relatively modest cost and with reasonable precision, to measure the increases in traffic associated with a scheme and to identify how much of that increase is due to rerouteing. Any further disaggregation of this extra traffic into that which is due to change of mode, change of destination and increased frequency, is much more problematic. The basic traffic counts would need to be supplemented by a programme of public transport surveys, registration plate marking and/or roadside interviews, which would add very considerably to the cost of the exercise. However, even with considerable expenditure, adequate precision may be difficult to achieve and attribution of cause impossible to make.  相似文献   

12.
Abstract

Near future travel-time information is one of the most critical factors that travellers consider before making trip decisions. In efforts to provide more reliable future travel-time estimations, transportation engineers have examined various techniques developed in the last three decades. However, there have not been sufficiently systematic and through reviews so far. In order to effectively support various transportation strategies and applications including Intelligent Transportation Systems (ITS), it is necessary to apply appropriate forecasting methods for matching circumstances in a timely manner. This paper conducts a comprehensive review study focusing on literatures, including modern techniques proposed recently, related to travel time and traffic condition predictions that are based on ‘data-driven' approaches. Based on the underlying mechanisms and theoretical principles, different approaches are categorized as parametric (linear regression and time series) and non-parametric approaches (artificial intelligence and pattern searching). Then, the approaches are analysed for their strengths, potential weaknesses, and performances from five main perspectives that are prediction range, accuracy, efficiency, applicability, and robustness.  相似文献   

13.
The objective of this paper is to prove by example the opportunities for cooperation between dynamic traffic management instruments. Agent technology is presented as a useful way to support the deployment of these ideas.In the Netherlands, more and more instruments are installed to promote the flow of traffic. As more and more instruments are deployed, chances are that conflicts will arise when control tools are applied in the same area. The increase in the number of the deployed instruments implies a bigger responsibility for the Dutch Traffic operators, who will have to ascertain which control scenarios are relevant to the situation at hand and implement them.By modeling the separate instruments as intelligent agents, it might be possible to tune the actions of the individual instruments through the agent concept of collaboration. Letting the individual instruments handle the most basic forms of coordination automatically might also relieve the traffic operator. This paper will demonstrate the aforementioned ideas using two simple examples: one in which consecutive ramp metering installations coordinate their actions to promote the flow at a downstream bottleneck and one in which traffic management instruments coordinate their actions to attain a common goal on the network-level.  相似文献   

14.
Current air traffic control systems are mainly conceived to ensure the safety of flights by means of tactical interventions, because of the difficulty of accurately foreseeing the traffic evolution. In fact, in real traffic conditions, planes are often penalized since sometimes safety standards are redundant. Today, this management philosophy is no longer valid because of congestion phenomena which often occur in the most important terminal areas. Therefore, as to future control systems it is necessary to introduce not only more automated procedures to keep adequate safety levels, but also planning functions in order to increase the system capacity and to improve system efficiency. In recent years several studies have been carried out, new control concepts have been introduced and some optimization models and algorithms developed to improve air traffic management. In this paper a survey of our early works in this field is reported and a multilevel model of air traffic management is proposed and discussed. The functions corresponding to the on-line control, that is flow control, strategic control of flights and aircraft sequencing in a terminal area, are examined and the optimization models and solution algorithms are illustrated. Finally, relevant problems coped by recent research are mentioned and new trends are indicated.  相似文献   

15.
This paper presents a review of traffic control as applied to congested or over‐saturated conditions. The paper begins with an introduction to traffic control in general, it then goes on to describe types of congestion, objectives for congestion control and some approaches to congestion control. Although the paper is mainly concerned with traffic signal control, other measures such as road pricing are described briefly.

More and more, traffic engineers have realized that existing traffic signals fail to perform satisfactorily under prolonged congestion or over‐saturated conditions. The paper identifies a number of theoretical studies which attempt to deal with such problems. It then describes the following traffic control systems, OPAC, PRODYN, SAGA, SCATS, SCOOT, STAUKO and UTOPIA, some more developed than others, and discusses their ability to deal with congestion. The paper presents the author's conclusions and recommendations for future research in the development of over‐saturation strategies.  相似文献   

16.
Perimeter control based on the Macroscopic Fundamental Diagram (MFD) is widely developed for alleviating or postponing congestion in a protected region. Recent studies reveal that traffic conditions might not be improved if the perimeter control strategies are applied to unstable systems where high demand generates heavy and heterogeneously distributed traffic congestion. Therefore, considering stability of the targeted traffic system is essential, for the sake of developing a feasible and then optimal control strategy. This paper sheds light on this direction. It integrates a stability characterization algorithm of MFD system equations into the Model Predictive Control (MPC) scheme, and features respectively an upper and a lower bound of the feasible control inputs, to guarantee system stability. Firstly, the dynamics of traffic heterogeneity and its effect on the MFD are analyzed, using real data from Guangzhou in China. Piecewise affine functions of average flow are proposed to capture traffic heterogeneity in both regional and subregional MFDs. Secondly, stability of a three-state two-region system is investigated via stable equilibrium and surface boundaries analysis. Finally, a three-layer hierarchical control strategy is introduced for the studied two-region heterogeneous urban networks. The first layer of the controller calculates the stable surface boundaries for the given traffic demands and then determines the bounds of control input (split rate). An MPC approach in the second layer is used to solve an optimization problem with two objectives of minimizing total network delay and maximizing network throughput. Heterogeneity among the subregions is minimized in the last layer by implementing simultaneously a subregional perimeter flow control and an internal flow control. The effectiveness and stability of the proposed control approach are verified by comparison with four existing perimeter control strategies.  相似文献   

17.
Advances in Information and Communication Technologies (ICT) allow the transportation community to foresee dramatic improvements for the incoming years in terms of a more efficient, environmental friendly and safe traffic management. In that context, new ITS paradigms like Cooperative Systems (C-ITS) enable an efficient traffic state estimation and traffic control. C-ITS refers to three levels of cooperation between vehicles and infrastructure: (i) equipped vehicles with Advanced Driver Assistance Systems (ADAS) adjusting their motion to surrounding traffic conditions; (ii) information exchange with the infrastructure; (iii) vehicle-to-vehicle communication. Therefore, C-ITS makes it possible to go a step further in providing real time information and tailored control strategies to specific drivers. As a response to an expected increasing penetration rate of these systems, traffic managers and researchers have to come up with new methodologies that override the classic methods of traffic modeling and control. In this paper, we discuss some potentialities of C-ITS for traffic management with the methodological issues following the expansion of such systems. Cooperative traffic models are introduced into an open-source traffic simulator. The resulting simulation framework is robust and able to assess potential benefits of cooperative traffic control strategies in different traffic configurations.  相似文献   

18.
为优化城市道路交通信号控制方法,本文结合交通信号控制系统建设发展现状,分析当前各大城市交通信号控制系统普遍存在的问题,立足于互联网环境下的浮动车数据,提出基于互联网平台大数据的交通信号控制辅助优化机制。研究发现可利用互联网路口拥堵报警数据及时有效发现问题路口,利用路段拥堵指数及路口交通流参数变化趋势辅助评估配时方案的优化效果,并通过成都市应用实例证明该机制适用于当前交通控制场景需求,可有效辅助交通信号优化工作,是传统交通模式向真正智能交通模式过渡的阶梯。  相似文献   

19.
The integration of drones into civil airspace is one of the most challenging problems for the automation of the controlled airspace, and the optimization of the drone route is a key step for this process. In this paper, we optimize the route planning of a drone mission that consists of departing from an airport, flying over a set of mission way points and coming back to the initial airport. We assume that during the mission a set of piloted aircraft flies in the same airspace and thus the cost of the drone route depends on the air traffic and on the avoidance maneuvers used to prevent possible conflicts. Two air traffic management techniques, i.e., routing and holding, are modeled in order to maintain a minimum separation between the drone and the piloted aircraft. The considered problem, called the Time Dependent Traveling Salesman Planning Problem in Controlled Airspace (TDTSPPCA), relates to the drone route planning phase and aims to minimize the total operational cost. Two heuristic algorithms are proposed for the solution of the problem. A mathematical formulation based on a particular version of the Time Dependent Traveling Salesman Problem, which allows holdings at mission way points, and a Branch and Cut algorithm are proposed for solving the TDTSPPCA to optimality. An additional formulation, based on a Travelling Salesman Problem variant that uses specific penalties to model the holding times, is proposed and a Cutting Plane algorithm is designed. Finally, computational experiments on real-world air traffic data from Milano Linate Terminal Maneuvering Area are reported to evaluate the performance of the proposed formulations and of the heuristic algorithms.  相似文献   

20.
Rapid advances in computing, sensing and telecommunication technology offer unprecedented opportunities for artificial intelligence concepts to expand their applications in the field of traffic management and control. Our methodology gravitates around a powerful decision-making method: ensemble-based systems. This technique is used to accurately classify the near future traffic conditions and to make efficient decisions for adapting the traffic lights sequences within an urban area to optimize the traffic flows. The proposed approach requires only measurements provided by traffic sensors located along the principal roads entering the zone. This reduced number of sensors are considered to be enough relevant for classifying the near future state of the traffic and moreover, their measurements can be validated through analytical/hardware redundancy. Our methodology is meant to be implemented within the framework of a wireless sensor and actuator network and is confirmed by computer simulation, including normal or abnormal traffic conditions, for the central part of the city of Timisoara-Romania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号