首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traffic network according to the evolving traffic conditions. The traffic management center can determine desired routes for drivers in order to optimize the performance of the traffic network by dynamic traffic routing. However, a traffic network may have thousands of links and nodes, resulting in a large-scale and computationally complex non-linear, non-convex optimization problem. To solve this problem, Ant Colony Optimization (ACO) is chosen as the optimization method in this paper because of its powerful optimization heuristic for combinatorial optimization problems. ACO is implemented online to determine the control signal – i.e., the splitting rates at each node. However, using standard ACO for traffic routing is characterized by four main disadvantages: 1. traffic flows for different origins and destinations cannot be distinguished; 2. all ants may converge to one route, causing congestion; 3. constraints cannot be taken into account; and 4. neither can dynamic link costs. These problems are addressed by adopting a novel ACO algorithm with stench pheromone and with colored ants, called Ant Colony Routing (ACR). Using the stench pheromone, the ACR algorithm can distribute the vehicles over the traffic network with less or no traffic congestion, as well as reduce the number of vehicles near some sensitive zones, such as hospitals and schools. With colored ants, the traffic flows for multiple origins and destinations can be represented. The proposed approach is also implemented in a simulation-based case study in the Walcheren area, the Netherlands, illustrating the effectiveness of the approach.  相似文献   

2.
Time definite freight transportation carriers provide very reliable scheduled services between origin and destination terminals. They seek to reduce transportation costs through consolidation of shipments at hubs, but are restricted by the high levels of service to provide less circuitous routings. This paper develops a continuous approximation model for time definite transportation from many origins to many destinations. We consider a transportation carrier serving a fixed geographic region in which demand is modeled as a continuous distribution and time definite service levels are imposed by limiting the maximum travel distance via the hub network. Analytical expressions are developed for the optimal number of hubs, hub locations, and transportation costs. Computational results for an analogous discrete demand model are presented to illustrate the behavior observed with the continuous approximation models.  相似文献   

3.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

4.
This paper develops a procedure for deciding whether to route a shipment through an intermediate transportation terminal or route it directly to its destination. The procedure applies to networks with many origins (e.g. 2000) and few destinations (e.g. 20, or vice versa), where each origin is served by exactly one terminal. This decision is difficult because of economies-to-scale in transportation, which cause the cost of routing a shipment through a terminal to depend on the routes chosen for other shipments. The optimization procedure developed here finds the optimal routes graphically with a one-dimensional search, and is sufficiently efficient to be programmed on a hand calculator or personal computer. The procedure also provides insights as to the sensitivity of the optimal solution to changes in model parameters.  相似文献   

5.
We propose a new mathematical formulation for the problem of optimal traffic assignment in dynamic networks with multiple origins and destinations. This problem is motivated by route guidance issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. We assume that the network is subject to known time-varying demands for travel between its origins and destinations during a given time horizon. The objective is to assign the vehicles to links over time so as to minimize the total travel time experienced by all the vehicles using the network. We model the traffic network over the time horizon as a discrete-time dynamical system. The system state at each time instant is defined in a way that, without loss of optimality, avoids complete microscopic detail by grouping vehicles into platoons irrespective of origin node and time of entry to network. Moreover, the formulation contains no explicit path enumeration. The state transition function can model link travel times by either impedance functions, link outflow functions, or by a combination of both. Two versions (with different boundary conditions) of the problem of optimal traffic assignment are studied in the context of this model. These optimization problems are optimal control problems for nonlinear discrete-time dynamical systems, and thus they are amenable to algorithmic solutions based on dynamic programming. The computational challenges associated with the exact solution of these problems are discussed and some heuristics are proposed.  相似文献   

6.
In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on the time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.  相似文献   

7.
The authors describe the development and application of a single, integrated digital representation of a multimodal and transcontinental freight transportation network. The network was constructed to support the simulation of some five million origin to destination freight shipments reported as part of the 1997 United States Commodity Flow Survey. The paper focuses on the routing of the tens of thousands of intermodal freight movements reported in this survey. Routings involve different combinations of truck, rail and water transportation. Geographic information systems (GIS) technology was invaluable in the cost-effective construction and maintenance of this network and in the subsequent validation of mode sequences and route selections. However, computationally efficient routing of intermodal freight shipments was found to be most efficiently accomplished outside the GIS. Selection of appropriate intermodal routes required procedures for linking freight origins and destinations to the transportation network, procedures for modeling intermodal terminal transfers and inter-carrier interlining practices, and a procedure for generating multimodal impedance functions to reflect the relative costs of alternative, survey reported mode sequences.  相似文献   

8.
The purpose of this paper is to determine optimal shipping strategies (i.e. routes and shipment sizes) on freight networks by analyzing trade-offs between transportation, inventory, and production set-up costs. Networks involving direct shipping, shipping via a consolidation terminal, and a combination of terminal and direct shipping are considered. This paper makes three main contributions. First, an understanding is provided of the interface between transportation and production set-up costs, and of how these costs both affect inventory. Second, conditions are identified that indicate when networks involving direct shipments between many origins and destinations can be analyzed on a link-by-link basis. Finally, a simple optimization method is developed that simultaneously determines optimal routes and shipment sizes for networks with a consolidation terminal and concave cost functions. This method decomposes the network into separate sub-networks, and determines the optimum analytically without the need for mathematical programming techniques.  相似文献   

9.
When items of different shapes, sizes and weights are transported, some item combinations make most effective use of a vehicle's capacity. A consolidation center, receiving shipments of various items from different origins, can act as a point where those combinations can be formed. While sending shipments through the center invariably increases the total item-miles traveled, judicious shipping can reduce the vehicle-miles traveled. This paper examines ways in which loads should be made up to achieve as large a reduction in vehicle-miles as possible. The paper first considers a building block in which items are sent directly from one origin to one destination, and then analyzes a terminal serving many origins and one destination. The understanding developed from the building block leads to a linear programming formulation of the load make-up/routing problem that arises with many origins. The paper also presents a decomposition principle, and a matching algorithm that can be used to solve the problem in the important special case when vehicles can carry many items. The algorithm has a simple physical interpretation and does not require much data. It can be implemented by hand, or on an inexpensive computer.  相似文献   

10.
This paper creates and evaluates spatial models for multiple stop delivery routes that are allowed to begin and end at separate terminals. Each terminal must deliver a set of unique items. These deliveries can be coordinated with deliveries from other terminals to form back-haul loops. The paper assumes that stops are uniformly distributed over a large region and that a strip-routing strategy is followed. Among the findings are that the optimal orientation of a delivery district is defined by the ellipse passing through the routing district and having the terminals as foci. The paper also determines optimal district shape, and determines which districts should be traveled in a single pass (entering and exiting at opposite ends), and which should be traversed in two passes (entering and exitin from the same end).  相似文献   

11.
This paper studies the effect on carbon emissions of consolidation of shipments on trucks. New positioning and communication technologies, as well as decision support systems for vehicle routing, enable better utilization of vehicle capacity, reduced travel distance, and thereby carbon emission reductions. We present a novel carbon emission analysis method that determines the emission savings obtained by an individual transport provider, who receives customer orders for outbound deliveries as well as pickup orders from supply locations. The transport provider can improve vehicle utilization by performing pickups and deliveries jointly instead of using separate trucks. In our model we assume that the transport provider minimizes costs by use of a tool that calculates detailed vehicle routing plans, i.e., an assignment of each transport order to a specific vehicle in the fleet, and the sequence of customer visit for each vehicle. We compare a basic set-up, in which pickups and deliveries are segregated and performed with separate vehicles, with two consolidation set-ups where pickups and deliveries may be mixed more or less freely on a single vehicle. By allowing mixing, the average vehicle load will increase and the total driven distance will decrease. To compare carbon emissions for the three set-ups, we use a carbon assessment method that uses the distance driven and the average load factor. An increase in the load factor can reduce part of the emission savings from consolidation. We find that emission savings are relatively large in case of small vehicles and for delivery and pickup locations that are relatively far from the depot. However, if a truck visits many demand and supply locations before returning to the depot, we observe negligible carbon emission decreases or even emission increases for consolidation set-ups, meaning that in such cases investing in consolidation through joint pickups and deliveries may not be effective. The results of our study will be useful for transport users and providers, policymakers, as well as vehicle routing technology vendors.  相似文献   

12.
This paper proposes a new scheduled-based transit assignment model. Unlike other schedule-based models in the literature, we consider supply uncertainties and assume that users adopt strategies to travel from their origins to their destinations. We present an analytical formulation to ensure that on-board passengers continuing to the next stop have priority and waiting passengers are loaded on a first-come-first-serve basis. We propose an analytical model that captures the stochastic nature of the transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse weather. We adopt a mean variance approach that can consider the covariance of travel time between links in a space–time graph but still lead to a robust transit network loading procedure when optimal strategies are adopted. The proposed model is formulated as a user equilibrium problem and solved by an MSA-type algorithm. Numerical results are reported to show the effects of supply uncertainties on the travel strategies and departure times of passengers.  相似文献   

13.
We consider in this paper the problem of determining intermediate origin-destination matrices for composite mode trips that involve a trip by private car to a parking facility and the continuation of the trip to the destination either by walking or by a transit mode. The intermediate origin-destination matrices relate to each component of the composite mode trip: a matrix from the trip origins to intermediate destinations which are parking lots and a matrix from the parking lots to the final destinations. The approach that we propose to solve this problem is to modify the entropy based trip distribution models to consider inequality constraints related to parking lot capacities. Such models may be easily calibrated by using well known calibration methods or generalization of these methods and may be easily solved by applying a primal feasible direction method of nonlinear programming.  相似文献   

14.
This paper studies last train coordination problem for metro networks, aiming to maximize the total number of passengers who can reach their destinations by metro prior to the end of operation. The concept of last boarding time is defined as the latest time that passengers can board the last trains and reach final destinations. The corresponding method for calculating last boarding time is also put forward. With automatic fare collection system data, an optimization model for coordinating last trains is proposed. The objective function optimizes the number of passengers who can reach their final destinations during the train period using departure times and headways of last trains for each line as decision variables. Afterwards, an adaptive genetic algorithm is put forward to solve this model and is applied to a case study of the Shanghai metro system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This research focuses on finding the best transfer schemes in metro networks. Using sample-based time-invariant link travel times to capture the uncertainty of a realistic network, a two-stage stochastic integer programming model with the minimized expected travel time and penalty value incurred by transfer activities is formulated. The first stage aims to find a sequence of potential transfer nodes (stations) that can compose a feasible path from origins to destinations in the transfer activity network, and the second stage provides the least time paths passing by the generated transfer stations in the first stage for evaluating the given transfer schemes and then outputs the best routing information. To solve our proposed model, an efficient hybrid algorithm, in which the label correcting algorithm is embedded into a branch and bound searching framework, is presented to find the optimal solutions of the considered problem. Finally, the numerical experiments are implemented in different scales of metro networks. The computational results demonstrate the effectiveness and performance of the proposed approaches even for the large-scale Beijing metro network.  相似文献   

16.
ABSTRACT

Airport terminals are dynamic environments and security/passport services generally constitute costly bottlenecks in terminals. Increases in the number of airline passengers compels airport terminals to provide more efficient services to its customers under space and resource limitations. This study examines the level of service of passenger processes at Istanbul Atatürk Airport by constructing a comprehensive simulation model. It focuses mainly on passport control services and passenger transfer security services because of the airport's hub status and the strategy of Turkish Airlines. The increasing number of transfer passengers may cause disruptions in departure flight schedules due to slow passenger processes. After validating the model, we investigate the consequences of three main alternative solutions, including 17 sub-scenarios, to capture target quality levels. Finally, we provide the results for each scenario to investigate the optimum allocation of resources to terminal operations.  相似文献   

17.
Chen  Xiaowei  Zheng  Hongyu  Wang  Ze  Chen  Xiqun 《Transportation》2021,48(4):1541-1561
Transportation - On-demand ridesplitting is a form of ridesourcing where riders with similar origins and destinations are matched to the same driver and vehicle in real time, and the ride and costs...  相似文献   

18.
Transportation - Bicycling is an increasingly popular mode of travel in Canadian urban areas, like the Greater Toronto and Hamilton Area (GTHA). While trip origins and destinations can be inferred...  相似文献   

19.
The number of vehicles on the road (worldwide) is constantly increasing, causing traffic jams and congestion especially in city traffic. Anticipatory vehicle routing techniques have thus far been applied to fairly small networked traffic scenarios and uniform traffic. We note here a number of limitations of these techniques and present a routing strategy on the assumption of a city map that has a large number of nodes and connectivity and where the vehicles possess highly varying speed capabilities. A scenario of operation with such characteristics has not previously been sufficiently studied in the literature. Frequent short‐term planning is preferred as compared with infrequent planning of the complete map. Experimental results show an efficiency boost when single‐lane overtaking is allowed, traffic signals are accounted for and every vehicle prefers to avoid high traffic density on a road by taking an alternative route. Comparisons with optimistic routing, pessimistic routing and time message channel routing are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Present traffic assignment methods require that all possible origins and destinations of trips taking place within a study area be represented as if they were taking place to and from a small set of points or centroids. Each centroid is supposed to represent the location of all trip-ends within a given zone, and this necessarily misrepresents points located at the edges of the zone.In order to alleviate this problem (which we refer to as the spatial aggregation problem) one could use smaller zones and more centroids, but existing traffic assignment algorithms cannot efficiently handle many centroids.This paper introduces an algorithm procedure which is designed to handle a substantially larger number of centroids. In the paper that follows, the technique is further developed to take into account a continuous distribution of population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号