首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

2.
Waiting time at public transport stops is perceived by passengers to be more onerous than in-vehicle time, hence it strongly influences the attractiveness and use of public transport. Transport models traditionally assume that average waiting times are half the service headway by assuming random passenger arrivals. However, research agree that two distinct passenger behaviour types exist: one group arrives randomly, whereas another group actively tries to minimise their waiting time by arriving in a timely manner at the scheduled departure time. This study proposes a general framework for estimating passenger waiting times which incorporates the arrival patterns of these two groups explicitly, namely by using a mixture distribution consisting of a uniform and a beta distribution. The framework is empirically validated using a large-scale automatic fare collection system from the Greater Copenhagen Area covering metro, suburban, and regional rail stations thereby giving a range of service headways from 2 to 60 min. It was shown that the proposed mixture distribution is superior to other distributions proposed in the literature. This can improve waiting time estimations in public transport models. The results show that even at 5-min headways 43% of passengers arrive in a timely manner to stations when timetables are available. The results bear important policy implications in terms of providing actual timetables, even at high service frequencies, in order for passengers to be able to minimise their waiting times.  相似文献   

3.
Recently, bus transit operators have begun to adopt technologies that enable bus locations to be tracked from a central location in real-time. Combined with other technologies, such as automated passenger counting and wireless communication, it is now feasible for these operators to execute a variety of real-time strategies for coordinating the movement of buses along their routes. This paper compares control strategies that depend on technologies for communication, tracking and passenger counting, to those that depend solely on local information (e.g., time that a bus arrived at a stop, and whether other connecting buses have also arrived). We also develop methods to forecast bus arrival times, which are most accurate for lines with long headways, as is usually the case in timed transfer systems. These methods are tested in simulations, which demonstrate that technology is most advantageous when the schedule slack is close to zero, when the headway is large, and when there are many connecting buses.  相似文献   

4.
Due to the stochastic nature of traffic conditions and demand fluctuations, it is a challenging task for operators to maintain reliable services, and passengers often suffer from longer travel times. A failure to consider this issue while planning bus services may lead to undesirable results, such as higher costs and a deterioration in level of service. Considering headway variation at route stops, this paper develops a mathematical model to optimize bus stops and dispatching headways that minimize total cost, consisting of both user and operator costs. A Genetic Algorithm is applied to search for a cost-effective solution in a real-world case study of a bus transit system, which improves service reliability in terms of a reduced coefficient of variation of headway.  相似文献   

5.
This paper focuses on how to minimize the total passenger waiting time at stations by computing and adjusting train timetables for a rail corridor with given time-varying origin-to-destination passenger demand matrices. Given predetermined train skip-stop patterns, a unified quadratic integer programming model with linear constraints is developed to jointly synchronize effective passenger loading time windows and train arrival and departure times at each station. A set of quadratic and quasi-quadratic objective functions are proposed to precisely formulate the total waiting time under both minute-dependent demand and hour-dependent demand volumes from different origin–destination pairs. We construct mathematically rigorous and algorithmically tractable nonlinear mixed integer programming models for both real-time scheduling and medium-term planning applications. The proposed models are implemented using general purpose high-level optimization solvers, and the model effectiveness is further examined through numerical experiments of real-world rail train timetabling test cases.  相似文献   

6.
This work is originally motived by the re-planning of a bus network timetable. The existing timetable with even headways for the network is generated using line by line timetabling approach without considering the interactions between lines. Decision-makers (i.e., schedulers) intend to synchronize vehicle timetable of lines at transfer nodes to facilitate passenger transfers while being concerned with the impacts of re-designed timetable on the regularity of existing timetable and the accustomed trip plans of passengers. Regarding this situation, we investigate a multi-objective re-synchronizing of bus timetable (MSBT) problem, which is characterized by headway-sensitive passenger demand, uneven headways, service regularity, flexible synchronization and involvement of existing bus timetable. A multi-objective optimization model for the MSBT is proposed to make a trade-off between the total number of passengers benefited by smooth transfers and the maximal deviation from the departure times of the existing timetable. By clarifying the mathematical properties and solution space of the model, we prove that the MSBT problem is NP-hard, and its Pareto-optimal front is non-convex. Therefore, we design a non-dominated sorting genetic (NSGA-II) based algorithm to solve this problem. Numerical experiments show that the designed algorithm, compared with enumeration method, can generate high-quality Pareto solutions within reasonable times. We also find that the timetable allowing larger flexibility of headways can obtain more and better Pareto-optimal solutions, which can provide decision-makers more choice.  相似文献   

7.
This brief paper derives the marginal social cost of headway for a scheduled service, i.e. the cost for users of marginal increases to the time interval between departures. In brief we may call it the value of headway in analogy with the value of travel time and the value of reliability. Users have waiting time costs as well as schedule delay costs measured relative to their desired time of arrival at the destination. They may either arrive at the station to choose just the next departure or they may plan for a specific departure in which case they incur also a planning cost. Then planning for a specific departure is costly but becomes more attractive at longer headways. Simple expressions for the user cost result. In particular, the marginal cost of headway is large at short headways and smaller at long headways. The difference in marginal costs is the value of time multiplied by half the headway.  相似文献   

8.
Headway control strategies have been proposed as methods for correcting transit service irregularities and thereby reducing passenger wait times at stops. This paper addresses a particular strategy which can be implemented on high frequency routes (headways under 10–12 minutes), in which buses are held at a control stop to a threshold headway. An algorithm is developed which yields the optimal control stop location and optimal threshold headway with respect to a system wait function. The specification of the wait function is based on the development of several empirical models, including a headway variation model and an average delay time model at control stops. A conclusion is reached that the headway variation does not increase linearly along a route, a common assumption made in many previous studies. Furthermore, the location of the optimal control stop and threshold value are sensitive to the passenger boarding profile, as expected. The algorithm itself appears to have practical application to conventional transit operations.  相似文献   

9.
The usual approach to studying bulk service queues is to assume that successive headways are independent. This assumption is frequently violated in systems where vehicles depart according to a fixed schedule, but where deviations from the schedule may occur. A late departure implies there is one long headway followed by a shorter one. This problem is solved exactly using both classical transform techniques and iterative numerical methods. Experiments with the latter approach are presented, and comparisons between the exact results and those obtained by ignoring correlations between headways are performed. The results suggest that upper and lower bounds may be developed using existing results, where the upper bound is accurate in light traffic while the lower bound is accurate in heavy traffic.  相似文献   

10.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In uncontrolled bus systems, buses tend to bunch due to the stochastic nature of traffic flows and passenger demand at bus stops. Although schedules and priori target methods introduce slack time to delay buses at control points to maintain constant headways between successive buses, too much slack required delay passengers on-board. In addition, these methods focus on regular headways and do not consider the rates of convergence of headways after disturbances. We propose a self-adaptive control scheme to equalize the headways of buses with little slack in a single line automatically. The proposed method only requires the information from the current bus at the control point and both its leading and following buses. This elegant method is shown to regulate headways faster than existing methods. In addition, compared to previous self-equalizing methods, the proposed method can improve the travel time of buses by about 12%, while keeping the waiting time of passengers almost the same.  相似文献   

12.
This paper provides an overview of the transit operational planning process with an emphasis on certain aspects of new methodologies in scheduling. The transit scheduling system usually consists of three interelated components: (1) creation of timetables; (2) scheduling vehicles to trips; and (3) assignment of drivers. These three components are described, but with a focus on the first component because of its importance from the user's perspective. The design of a transit timetable is discussed from both a practical and an analytical viewpoint. A methodology is presented on the construction of alternative computerized public timetables, based on procedures that improve the correspondence of vehicle departure times with passenger demand. The vehicle scheduling procedure is viewed through the minimization of the number of vehicles required to carry out a fixed or variable timetable. Finally, different approaches to the crew assignment component are briefly discussed. The overview and methodologies presented in the paper suggest that most scheduling tasks can be performed automatically or in a conversational man-computer mode. The adoption of new scheduling procedures will undoubtedly increase the efficiency of each of the three components of the transit scheduling system.  相似文献   

13.
This paper presents a methodology for analyzing the capacity of all-way stop-controlled intersections and the data that have been collected to validate and support the methodology. The rate of departure from one approach of an all-way stop-controlled intersection is controlled by the presence or absence of vehicles on the other approaches. This degree of conflict is classified into a set of unique cases. Field measurements covering over 20,000 vehicle headways were classified into five degree of conflict cases. The model forecasts the mean departure headway based on the probability of occurrence of each degree of conflict case. ©  相似文献   

14.
This research extends a static threshold based control strategy used to control headway variation to a dynamic threshold based control strategy. In the static strategy, buses are controlled by setting a threshold value that holds buses at a control point for a certain amount of time before allowing the bus to continue along the route. The threshold remains constant each time the bus stops at the control point. The dynamic strategy involves the same principle of holding buses at a bus stop; however, a different threshold value is chosen each time the bus holds at a control point. The results indicate that in cases where the static threshold is set equal to the scheduled headway, very low headway variation and passenger system times result; however, passengers on board the bus are penalized by extra delay on the bus while waiting at the control point. The dynamic strategy reduces the penalty to passengers delayed on-board the bus at a control point at the expense of a slight increase in overall passenger system time.The results indicate that in most cases, the tradeoff of the slight increase in waiting time for the significant decrease in on-board delay penalty makes the dynamic strategy an acceptable choice.  相似文献   

15.
If bus service departure times are not completely unknown to the passengers, non-uniform passenger arrival patterns can be expected. We propose that passengers decide their arrival time at stops based on a continuous logit model that considers the risk of missing services. Expected passenger waiting times are derived in a bus system that allows also for overtaking between bus services. We then propose an algorithm to derive the dwell time of subsequent buses serving a stop in order to illustrate when bus bunching might occur. We show that non-uniform arrival patterns can significantly influence the bus bunching process. With case studies we find that, even without exogenous delay, bunching can arise when the boarding rate is insufficient given the level of overall demand. Further, in case of exogenous delay, non-uniform arrivals can either worsen or improve the bunching conditions, depending on the level of delay. We conclude that therefore such effects should be considered when service control measures are discussed.  相似文献   

16.
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower average costs and provides convenient door-to-door service. Bus size and operation type are related since larger buses have lower average cost per passenger at higher demand densities. The operation type and other decisions are jointly optimized here for a bus transit system connecting a major terminal to local regions. Conventional and flexible bus sizes, conventional bus route spacings, areas of service zones for flexible buses, headways, and fleet sizes are jointly optimized in multi-dimensional nonlinear mixed integer optimization problems. To solve them, we propose a hybrid approach, which combines analytic optimization with a Genetic Algorithm. Numerical analysis confirms that the proposed method provides near-optimal solutions and shows how the proposed Mixed Fleet Variable Type Bus Operation (MFV) can reduce total cost compared to alternative operations such as Single Fleet Conventional Bus (SFC), Single Fleet Flexible Bus (SFF), Mixed Fleet Conventional Bus (MFC) and Mixed Fleet Flexible Bus (MFF). With consistent system-wide bus sizes, capital costs are reduced by sharing fleets over times and over regions. The sensitivity of results to several important parameters is also explored.  相似文献   

17.
Due to its importance, lots of investigations had been carried out in the last four decades to study the relationship between phase duration and vehicle departure amount. In this paper, we aim to build appropriate distribution models for start-up lost time and effective departure flow rate, by considering their relations with the frequently mentioned departure headway distributions. The motivation behind is that distribution models could provide richer information than the conventional mean value models and thus better serve the need of traffic simulation and signal timing planning. To reach this goal, we first check empirical data collected in Beijing, China. Tests show that the departure headways at each position in a discharging queue are very weakly dependent or almost independent. Based on this new finding, two distribution models are proposed for start-up lost time and effective flow rate, respectively. We also examine the dependences of departure headways that are generated by three popular traffic simulation software: VISSIM, PARAMICS and TransModeler. Results suggest that in VISSIM, the departure headways at different positions are almost deterministically dependent and may not be in accordance with empirical observations. Finally, we discuss how the dependence of departure headways may influence traffic simulation and signal timing planning.  相似文献   

18.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

19.
This paper develops an application-oriented model to estimate waiting times as a function of bus departure time intervals. Bus stops are classified into Type A and B depending on whether they are connected with urban rail transit systems. Distributions of passenger arrival rates are analyzed based on field data for Beijing. The results indicate that the best fits for the distribution of passenger arrival rates for Type A and B bus stops are the lognormal distribution and gamma distribution, respectively. By analyzing relationships between passenger arrival rates and bus departure time intervals, it is demonstrated that parameters of the passenger arrival rate distribution can be expressed by the average and coefficient of variation of bus departure time intervals in functional relationships. The validation shows that the model provides a reliable estimation of the average passenger waiting time based on readily available bus departure time intervals.  相似文献   

20.
Using the schedule‐based approach, in which scheduled timetables are used to describe the movement of vehicles, a dynamic transit assignment model is formulated. Passengers are assumed to travel on a path with minimum generalized cost that consists of four components: in‐vehicle time; waiting time; walking time; and a time penalty for each line change. A specially developed branch and bound algorithm is used to generate the time‐dependent minimum path. The assignment procedure is conducted over a period in which both passenger demand and train headway are varying. This paper presents an overview of the research that has been carried out by the authors to develop the schedule‐based transit assignment model, and offers perspectives for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号