共查询到14条相似文献,搜索用时 46 毫秒
1.
熊轶 《武汉理工大学学报(交通科学与工程版)》2009,33(2)
在交通信息系统作用下的路网中,出行者会根据交通信息系统提供的交通状况信息和以往的经验来选择自己的出行路线和出发时间.根据出行者对交通信息的信任和接受程度,文中将出行者分为怀疑保守型、信任乐观型和中庸型3种类型.在获得路径旅行时间信息和已往旅行经验的基础上,推导出新一轮的期望理解路径旅行时间函数,讨论了该函数的特性,建立了一个等价的随时间演进的随机用户均衡模型,并用一算例验证了模型的效率. 相似文献
2.
在考虑信息对出行者路径选择行为影响的基础上,基于路网混合随机用户均衡建模理论,建立了ATIS影响下的混合随机用户均衡交通分配模型,证明了该数学规划模型解的等价性,设计了求解算法,并利用算例进行了计算分析. 相似文献
3.
ATIS影响下的混合随机用户均衡交通分配模型研究 总被引:4,自引:0,他引:4
在考虑信息对出行者路径选择行为影响的基础上,基于路网混合随机用户均衡建模理论,建立了ATIS影响下的混合随机用户均衡交通分配模型,证明了该数学规划模型解的等价性,设计了求解算法,并利用算例进行了计算分析. 相似文献
4.
为了使交通分配更符合出行者的实际行为特征,基于累积前景理论,给出了交通流连续分布状态下路
径前景的连续函数表达式,建立了随机用户均衡模型,并给出了等价的变分不等式.该模型同时考虑了交通系统
的不确定性、出行者的感知误差以及建模者的观测误差.讨论了模型解的性质,设计了求解算法,并通过算例进
行了验证.结果表明:在(0,1)区间内,当出行可靠性参数或风险态度参数值越大时,出行者对于风险的感知越敏
感,越倾向于选择行程时间波动较小的路径;当感知误差较小或路网不确定性程度较大时,出行者的路径选择行
为均逐渐趋于稳定.研究还表明,出行者的损失规避程度对网络均衡态的影响不明显. 相似文献
5.
在考虑交通信息对出行者路径选择行为影响的基础上,将出行者划分为配有"先进的出行者信息系统(Advanced traveler information system,ATIS)接受装置"和"无ATIS接受装置"两类。假定在路网随机变化的情况下,两类出行者均以成本最小为路径选择准则,建立了在ATIS影响下的基于出行成本的随机用户均衡模型,并利用相继平均算法(Method of successive averages,MSA)和蒙特卡罗(Monte-Carlo)法设计了模型的求解算法。最后,通过一个算例验证了算法的有效性,表明该模型能反映出行者在交通信息影响下,做出的路径选择行为能带来一定的收益。 相似文献
6.
研究了出行者对路网熟悉程度的指标与交通流分配均衡性之间的关系, 提出了具有指数形式信息素更新策略的随机用户均衡模型蚁群优化算法, 建立了从Logit模型加载, 到交通需求确认及路径流量、路段流量、路段阻抗、路径阻抗迭代计算的交通分配动态循环流程; 计算了Nguyen-Dupuis路网模型中各路段的流量与阻抗, 并与连续平均算法计算结果进行比较; 通过调节出行者对路网熟悉程度的因子, 分析了蚁群优化算法与连续平均算法的敏感性。研究结果表明: 采用连续平均算法和蚁群优化算法计算的路段流量分布分别为20~280、40~260pcu, 蚁群优化算法的流量分布区间减小了15.4%, 路段流量的最大值减小了7.1%, 因此, 采用蚁群优化算法计算的路段流量较为均衡; 采用蚁群优化算法时, 在Nguyen-Dupuis路网模型中各路段流量的标准差从65pcu降至48pcu, 88%可选路径的阻抗分布在61~64, 且84%的路径阻抗低于采用连续平均算法计算的阻抗, 因此, 采用蚁群优化算法减少了用户出行时间; 当路网熟悉程度分别为0.01、0.1、1、2、7、11时, 采用连续平均算法计算的路段流量标准差分别为75、65、50、47、45、45pcu, 采用蚁群优化算法计算的路段流量标准差分别为48、48、48、47、43、43pcu, 可见, 随着路网熟悉程度的增大, 分配在各路段上的流量范围逐渐减小, 标准差趋于稳定, 信息素更新策略对出行者的路径选择概率影响越明显, 出行者选择阻抗小的路径的概率变大, 因此, 采用蚁群优化算法对路段的流量分配逐渐优于连续平均算法。 相似文献
7.
多用户多模式多准则随机用户均衡模型 总被引:1,自引:0,他引:1
在网络中存在多类用户和多种模式,每一类用户按照出行时间和出行费用2个准则共同选择模式和路径,且不同模式间阻抗的相互影响满足对称条件的前提下,建立了多用户多模式多准则的随机用户网络均衡模型,用一个等价最小凸规划公式来表示这一混合均衡状态,并证明了所构建的数学规划公式与基于Logit的随机用户均衡条件的等价性,进一步证明了模型最优解的存在性和惟一性条件.最后用一个简单算例表明了所构建的模型的正确性和可行性. 相似文献
8.
在经典随机后悔最小化模型的基础上,通过引入出行者获益损失的不对称偏好,建立了考虑出行者损失厌恶的属性水平的后悔函数及基于Logit形式的随机用户均衡模型.在提出的属性水平的后悔函数中,等尺度的获益和损失所产生的欣喜和后悔的差异,受后悔欣喜偏好参数和出行者损失厌恶共同影响.此外,与上述随机用户均衡模型等价的变分不等式问题被给出,并用相继平均法求解.最后,用1个算例网络来验证所提出模型的合理性和算法的可行性.结果表明,出行者的损失厌恶对其路径选择行为具有较大的影响,并且随着损失厌恶程度的增大,出行者更倾向于选择最短路径. 相似文献
9.
10.
建立了考虑风险爱好驾驶人的相依Weibull随机交通分配(Weibull-DSA) 模型, 分析了感知等价路径负效用的Weibull边缘生存函数, 假设驾驶人总是选择感知等价路径负效用最小的路径到达目的地, 采用Copula方法构建了感知等价路径负效用的联合生存函数, 预测了路径选择概率; 设计了模型的迭代求解算法, 对模型进行了理论分析和数值验证; 研究了广州市交通调查获得的风险系数, 基于风险爱好和风险中立驾驶人, 比较了采用Weibull-DSA模型与经典的Logit-SUE和Weibit-SUE模型计算的路径选择概率、路段交通量、饱和度与系统总出行时间。计算结果表明: 随着风险系数的降低, 3种分配模型的交通系统总出行时间变大; 在风险中立情况下, 应用Weibull-DSA模型、Logit-SUE模型和Weibit-SUE模型计算得到每OD对的所有连接路径选择概率的最大差值, 分别为0.17、0.33、0.34, 在风险爱好情况下, 由3种模型得到的最大差值分别为0.20、0.36、0.41, 因此, 采用Weibull-DSA模型计算得到的不同路径选择概率的最大差值明显小于经典模型计算得到的最大差值; 相对于风险中立情况, 风险系数使得每OD对的所有连接路径选择概率的最大差值变大; 无论是风险爱好还是风险中立驾驶人, 采用Logit-SUE和Weibit-SUE模型计算得到的路段饱和度均小于0.9, 采用Weibull-DSA模型计算得到路段饱和度大于0.9;与经典模型计算结果不同, 采用Weibull-DSA模型得到的不同路径选择概率的最大差值相差较小, 一些路径获得更多交通量, 使得路径中通行能力最小的路段的饱和度大于0.9, 这一特征给出了城市路网中部分瓶颈路段拥堵现象一个新的解释。 相似文献
11.
12.
出行者为了在有限的时间内参与既定活动,并使参与活动的整个过程效用最 大化,倾向将多个目的的出行以链结方式进行,以减少出行时间.针对传统的网络配流模 型是基于单次出行的方法,在进行网络配流时,活动链各环节被单独分开,难以反映出行 者的出行选择行为.本文构造了一种基于活动的城市交通网络平衡分析方法,结合随机效 用理论,以活动链方式进行网络配流,使配流模型更符合出行者的实际选择行为.并将该 模型运用于道路拥挤收费策略的制定,克服了基于出行的网络平衡配流模型的一些缺点. 最后,通过一个算例对模型和算法进行验证. 相似文献
13.
为准确描述随机路网环境下出行者规避行程时间不确定风险的择路行为,推导了通勤者需求量服从对数正态分布和路段通行能力服从贝塔分布条件下计算期望-超额行程时间的计算公式,并在考虑出行者对行程时间的估计误差和路网服务水平对交通需求影响的基础上,建立了用等价变分不等式表示的多用户弹性随机期望-超额用户平衡模型.算例结果表明:随着需求水平波动程度和路段通行能力退化程度的加剧,当需求方差-均值比从0.5增至2.0、贝塔分布参数(l和m)从90和10变为10和10时,通勤者和非通勤者期望最小理解期望-超额行程时间分别增加了48.5%和99.2%. 相似文献
14.
����ATIS���ͺ�Ӱ��������ٶ��Ż�ģ�� 总被引:1,自引:0,他引:1
随着城市机动车保有量的飞速增长,油气资源的短缺问题日益严重,如何采取有效措施减少能源消耗是一个值得深入研究的问题。用双层规划思想建立先进出行者信息系统和油耗的最优速度确定的优化模型。在此模型中,上层规划是通过系统总出行时间和油耗总量确定最优速度的问题,下层问题是在一定速度条件下考虑先进出行者信息系统影响的出行道路选择行为,构造了弹性需求条件下的随机用户平衡配流模型,并给出了一个平衡迭代算法进行求解。最后用了一个简单的算例,对模型的求解算法进行了验证。研究结果显示,随着出行者对道路实际情况认识程度的降低,可以通过提高装备ATIS设备的出行者比率,使得出行者能够合理地进行路径选择,从而降低系统总费用。 相似文献