首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the performance of accessibility‐based equity measurements in transportation and proposes a multiobjective optimization model to simulate the trade‐offs between equity maximization and cost minimization of network construction. The equity is defined as the spatial distribution of accessibilities across zone areas. Six representative indicators were formulated, including GINI coefficient, Theil index, mean log deviation, relative mean deviation, coefficient of variation, and Atkinson index, and incorporated into an equity maximization model to evaluate the performance sensitivity. A bilevel multiobjective optimization model was proposed to obtain the Pareto‐optimal solutions for link capacity enhancement in a stochastic road network design problem. A numerical analysis using the Sioux Falls data was implemented. Results verified that the equity indicators are quite sensitive to the pattern of network scenarios in the sense that the level of equity varies according to the amount of overall capacity enhancement as well as the assignment of improved link segments. The suggested multiobjective model that enables representing the Pareto‐optimal solutions can provide multiple options in the decision making of road network design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Network location models have been used extensively for siting public and private facilities. In this paper, we investigate a model that simultaneously optimizes facility locations and the design of the underlying transportation network. Motivated by the simple observation that changing the network topology is often more cost-effective than adding facilities to improve service levels, the model has a number of applications in regional planning, distribution, energy management, and other areas. The model generalizes the classical simple plant location problem. We show how the model can be solved effectively. We then use the model to analyze two potential transportation planning scenarios. The fundamental question of resource allocation between facilities and links is investigated, and a detailed sensitivity analysis provides insight into the model's usefulness for aiding budgeting and planning decisions. We conclude by identifying promising research directions.  相似文献   

4.
In this paper, we address the discrete network design problem, which determines the addition of new roads to existing transportation network to optimize the transportation system performance. Road users are assumed to follow the traffic assignment principle of stochastic user equilibrium. A mixed‐integer nonlinear nonconvex problem is developed to model this discrete network design problem with stochastic user equilibrium. The original problem is relaxed into a convex mixed‐integer nonlinear program, whose solution provides a lower bound of the original problem. The relaxed problem is then embedded into two proposed global optimization solution algorithms to obtain the global optimal solution of the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This study develops a methodology to model transportation network design with signal settings in the presence of demand uncertainty. It is assumed that the total travel demand consists of commuters and infrequent travellers. The commuter travel demand is deterministic, whereas the demand of infrequent travellers is stochastic. Variations in demand contribute to travel time uncertainty and affect commuters’ route choice behaviour. In this paper, we first introduce an equilibrium flow model that takes account of uncertain demand. A two-stage stochastic program is then proposed to formulate the network signal design under demand uncertainty. The optimal control policy derived under the two-stage stochastic program is able to (1) optimize the steady-state network performance in the long run, and (2) respond to short-term demand variations. In the first stage, a base signal control plan with a buffer against variability is introduced to control the equilibrium flow pattern and the resulting steady-state performance. In the second stage, after realizations of the random demand, recourse decisions of adaptive signal settings are determined to address the occasional demand overflows, so as to avoid transient congestion. The overall objective is to minimize the expected total travel time. To solve the two-stage stochastic program, a concept of service reliability associated with the control buffer is introduced. A reliability-based gradient projection algorithm is then developed. Numerical examples are performed to illustrate the properties of the proposed control method as well as its capability of optimizing steady-state performance while adaptively responding to changing traffic flows. Comparison results show that the proposed method exhibits advantages over the traditional mean-value approach in improving network expected total travel times.  相似文献   

6.
Optimal toll design from a network reliability point of view is addressed in this paper. Improving network reliability is proposed as a policy objective of road pricing. A reliability‐based optimal toll design model, where on the upper level network performance including travel time reliability is optimized, while on the lower level a dynamic user‐equilibrium is achieved, is presented. Road authorities aim to optimize network travel time reliability by setting tolls in a network design problem. Travelers are influenced by these tolls and make route and trip decisions by considering travel times and tolls. Network performance reliability is analyzed for a degradable network with elastic and fluctuated travel demand, which integrates reliability and uncertainty, dynamic network equilibrium models, and Monte Carlo methods. The proposed model is applied to a small hypothesized network for which optimal tolls are derived. The network travel time reliability is indeed improved after implementing optimal tolling system. Trips may have a somewhat higher, but more reliable, travel time.  相似文献   

7.
Temperature-controlled transport is needed to maintain the quality of products such as fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a considerable part of global emissions. Temperature-controlled transportation exhausts even more emissions than ambient temperature transport because of the extra fuel requirements for cooling and because of leakage of refrigerant. The transportation sector is under pressure to improve both its environmental and economic performance. To explore opportunities to reach this goal, the Load-Dependent Vehicle Routing Problem (LDVRP) model has been developed to optimize routing decisions taking into account fuel consumption and emissions related to the load of the vehicle. However, this model does not take refrigeration related emissions into account. We therefore propose an extension of the LDVRP model to optimize routing decisions and to account for refrigeration emissions in temperature-controlled transportation systems. This extended LDVRP model is applied in a case study in the Dutch frozen food industry. We show that taking the emissions caused by refrigeration in road transportation can result in different optimal routes and speeds compared with the LDVRP model and the standard Vehicle Routing Problem model. Moreover, taking the emissions caused by refrigeration into account improves the estimation of emissions related to temperature-controlled transportation. This model can help to reduce emissions of temperature-controlled road transportation.  相似文献   

8.
This paper presents a multiregional optimization model which explicitly considers the direct and indirect relationships between regional growth and investments in transportation infrastructure. Consumption, demand and investments for each sector and region are derived endogenously. Trade flows are simulated by a gravity function and transportation network investment decisions are represented by 0–1 integer variables. Despite its complex structure the model can be estimated by applying in two stages the Benders Partitioning Algorithm. The model is applied to Greece to obtain a comprehensive investment plan for the transportation system.  相似文献   

9.
A modelling framework is developed to analyze the effect of in-vehicle real time information strategies on the performance of a congested traffic communing corridor. The framework consists of a special-purpose simulation component and a user decisions component that determines users' responses to the supplied information. The user decisions component is microscopic and determines individual commuters' route switching, at any node of the network, as a function of the supplied information. The traffic simulation component moves vehicles in bundles or macroparticles at the prevailing local speeds, as determined by macroscopic traffic relations. The framework allows the investigation of system performance under alternative behavioral response mechanisms, as well as under different information strategies. Results are presented for simulation experiments in a commuting corridor with a special network structure that simplifies the network computations. The results illustrate the effect of the fraction of users equipped with in-vehicle navigation systems on overall system performance. In addition, alternative assumptions on user response reflecting varying degrees of optimizing behavior are explored. The modelling framework is shown to provide a useful approach for addressing key questions of interest in the design of real time in-vehicle information system.  相似文献   

10.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights.  相似文献   

11.
The development of railway transportation, especially through the gradual implementation of high-speed European network, is inciting railway companies to design railway movements command and control systems to enhance technical performance in terms of throughput and control of disturbances while simultaneously minimizing operational costs. The new command-control systems must be modular, adaptable and evolutive structures from both functional and geographical viewpoints if they are to satisfy all operational needs. Concurrent research into performance enhancement and cost reduction prescribes a system in which the majority of the “real time” components are aboards the locomotives. This is particularly true for those components used by the train to indicate its own position on the network as well as those enabling it to converse with operational control centers. The initial task is to design a global architecture of the command-control system that satisfies modularity and availability criteria followed by the development of numerous technical components including radar self-location systems and cellular radio transmission networks. The French (SNCF) and German (DB) national railways have implemented a vast program of co-operation aimed at providing valid, proven answers to these problems so as to allow their trains to travel freely on either network.  相似文献   

12.
13.
The use of fossil fuels in transportation generates harmful emissions that accounts for nearly half of the total pollutants in urban areas. Dealing with this issue, local authorities are dedicating specific efforts to seize the opportunity offered by new fuels and technological innovations in achieving a cleaner urban mobility. In fact, authorities are improving environmental performances of their public transport fleet by procuring cleaner vehicles, usually called low and zero emission vehicles (LEV and ZEV, respectively). Nevertheless there seems to be a lack of methodologies for supporting stakeholders in decisions related to the introduction of green vehicles, whose allocation should be performed since the network design process in order to optimize their available green capacity.In this paper, the problem of clean vehicle allocation in an existing public fleet is faced by introducing a method for solving the transit network design problem in a multimodal, demand elastic urban context dealing with the impacts deriving from transportation emissions.The solving procedure consists of a set of heuristics which includes a routine for route generation and a genetic algorithm for finding a sub-optimal set of routes with the associated frequencies.  相似文献   

14.
Planning a set of train lines in a large-scale high speed rail (HSR) network is typically influenced by issues of longer travel distance, high transport demand, track capacity constraints, and a non-periodic timetable. In this paper, we describe an integrated hierarchical approach to determine line plans by defining the stations and trains according to two classes. Based on a bi-level programming model, heuristics are developed for two consecutive stages corresponding to each classification. The approach determines day-period based train line frequencies as well as a combination of various stopping patterns for a mix of fast trunk line services between major stations and a variety of slower body lines that offer service to intermediate stations, so as to satisfy the predicted passenger transport demand. Efficiencies of the line plans described herein concern passenger travel times, train capacity occupancy, and the number of transfers. Moreover, our heuristics allow for combining many additional conflicting demand–supply factors to design a line plan with predominantly cost-oriented and/or customer-oriented objectives. A range of scenarios are developed to generate three line plans for a real-world example of the HSR network in China using a decision support system. The performance of potential train schedules is evaluated to further examine the feasibility of the obtained line plans through graphical timetables.  相似文献   

15.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

16.
交通运输业是经济社会实现快速发展的重要保障,是实现国家和区域可持续发展的必要基础,承担着推动经济社会实现高质量发展的历史使命。本文介绍了交通运输发展的内涵,结合建成小康社会、生态文明建设、交通强国建设等战略目标对交通运输发展总体要求,对评价指标体系进行了初步构建。在此基础上对初选评价指标体系进行了"四个检验",同时运用变异系数、相关系数等方法进行了评价指标体系的优化调整。本文所研究构建的评价指标体系及优化调整方法可为行业管理部门开展相关工作、制定相关政策提供参考。  相似文献   

17.
Existing theories and models in economics and transportation treat households’ decisions regarding allocation of time and income to activities as a resource-allocation optimization problem. This stands in contrast with the dynamic nature of day-by-day activity-travel choices. Therefore, in the present paper we propose a different approach to model activity generation and allocation decisions of individuals and households that acknowledges the dynamic nature of the behavior. A dynamic representation of time and money allocation decisions is necessary to properly understand the impact of new technologies on day to day variations in travel and activity patterns and on performance of transportation systems. We propose an agent-based model where agents, rather than acting on the basis of a resource allocation solution for a given time period, make resource allocation decisions on a day-by-day basis taking into account day-varying conditions and at the same time respecting available budgets over a longer time horizon. Agents that share a household interact and allocate household tasks and budgets among each other. We introduce the agent-based model and formally discuss the properties of the model. The approach is illustrated on the basis of simulation of behavior in time and space.  相似文献   

18.
Many metropolitan areas have started programs to monitor the performance of their transportation network and to develop systems to measure and manage congestion. This paper presents a review of issues, procedures, and examples of application of geographic information system (GIS) technology to the development of congestion management systems (CMSs). The paper examines transportation network performance measures and discusses the benefit of using travel time as a robust, easy to understand performance measure. The paper addresses data needs and examines the use of global positioning system (GPS) technology for the collection of travel time and speed data. The paper also describes GIS platforms and sample user interfaces to process the data collected in the field, data attribute requirements and database schemas, and examples of application of GIS technology for the production of maps and tabular reports.  相似文献   

19.
In a more and more competitive and global world, freight transports have to overcome increasingly long distances while at the same time becoming more reliable. In addition, a raising awareness of the need for environmentally friendly solutions increases the importance of transportation modes other than road. Intermodal transportation, in that regard, allows for the combination of different modes in order to exploit their individual advantages. Intermodal transportation networks offer flexible, robust and environmentally friendly alternatives to transport high volumes of goods over long distances. In order to reflect these advantages, it is the challenge to develop models which both represent multiple modes and their characteristics (e.g., fixed-time schedules and routes) as well as the transhipment between these transportation modes. In this paper, we introduce a Green Intermodal Service Network Design Problem with Travel Time Uncertainty (GISND-TTU) for combined offline intermodal routing decisions of multiple commodities. The proposed stochastic approach allows for the generation of robust transportation plans according to different objectives (i.e., cost, time and greenhouse gas (GHG) emissions) by considering uncertainties in travel times as well as demands with the help of the sample average approximation method. The proposed methodology is applied to a real-world network, which shows the advantages of stochasticity in achieving robust transportation plans.  相似文献   

20.
This paper investigates the role of transport pricing in network design and describes two facts about flow pattern in a transportation system. The first, illustrated by an example of Braess paradox, is that adding a new link to the network does not necessarily minimize the total travel time. The second is that introducing of appropriate toll pricing may reduce not only the total network time but also the travel time for each individual traveller. It follows with the investigations of different system objectives and different pricing policies (only toll pricing and distance‐based pricing are considered), and shows how they affect the system performance and flow pattern. Lastly, a systematic optimization process is proposed for integrated planning of transport network and pricing policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号