首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hafezi  Mohammad Hesam  Liu  Lei  Millward  Hugh 《Transportation》2019,46(4):1369-1394

This study develops a new comprehensive pattern recognition modeling framework that leverages activity data to derive clusters of homogeneous daily activity patterns, for use in activity-based travel demand modeling. The pattern recognition model is applied to time use data from the large Halifax STAR household travel diary survey. Several machine learning techniques not previously employed in travel behavior analysis are used within the pattern recognition modeling framework. Pattern complexity of activity sequences in the dataset was recognized using the FCM algorithm, and resulted in identification of twelve unique clusters of homogeneous daily activity patterns. We then analysed inter-dependencies in each identified cluster and characterized the cluster memberships through their socio-demographic attributes using the CART classifier. Based on the socio-demographic characteristics of individuals we were able to correctly identify which cluster individuals belonged to, and also predict various information related to their activities, such as start time, duration, travel distance, and travel mode, for use in activity-based travel demand modeling. To execute the pattern recognition model, the 24-h activity patterns are split into 288 three dimensional 5 min intervals. Each interval includes information on activity types, duration, start time, location, and travel mode if applicable. Results from aggregated statistical evaluation and Kolmogorov–Smirnov tests indicate that there is heterogeneous diversity among identified clusters in terms of temporal distribution, and substantial differences in a variety of socio-demographic variables. The homogeneous clusters identified in this study may be used to more accurately predict the scheduling behavior of specific population groups in activity-based modeling, and hence to improve prediction of the times and locations of their travel demands. Finally, the results of this study are expected to be implemented within the activity-based travel demand model, Scheduler for Activities, Locations, and Travel (SALT).

  相似文献   

2.
The daily activity-travel patterns of individuals often include interactions with other household members, which we observe in the form of joint activity participation and shared rides. Explicit representation of joint activity patterns is a widespread deficiency in extant travel forecasting models and remains a relatively under-developed area of travel behavior research. In this paper, we identify several spatially defined tour patterns found in weekday household survey data that describe this form of interpersonal decision-making. Using pairs of household decision makers as our subjects, we develop a structural discrete choice model that predicts the separate, parallel choices of full-day tour patterns by both persons, subject to the higher level constraint imposed by their joint selection of one of several spatial interaction patterns, one of which may be no interaction. We apply this model to the household survey data, drawing inferences from the household and person attributes that prove to be significant predictors of pattern choices, such as commitment to work schedules, auto availability, commuting distance and the presence of children in the household. Parameterization of an importance function in the models shows that in making joint activity-travel decisions significantly greater emphasis is placed on the individual utilities of workers relative to non-workers and on the utilities of women in households with very young children. The model and methods are prototypes for tour-based travel forecasting systems that seek to represent the complex interaction between household members in an integrated model structure.  相似文献   

3.
4.
5.
Understanding the process of activity scheduling is a critical pre-requisite to an understanding of changes in travel behavior. To examine this process, a computerized survey instrument was developed to collect household activity scheduling data. The instrument is unique in that it records the evolution of activity schedules from intentions to final outcomes for a weekly period. This paper summarizes an investigation of the structure of activity/travel patterns based on data collected from a pilot study of the instrument. The term “structure” refers to the sequence by which various activities enter one’s daily activity scheduling process. Results of the empirical analyses show that activities of shorter duration were more likely to be opportunistically inserted in a schedule already anchored by their longer duration counterparts. Additionally, analysis of travel patterns reveals that many trip-chains were formed opportunistically. Travel time required to reach an activity was positively related to the scheduling horizon for the activity, with more distant stops being planned earlier than closer locations.  相似文献   

6.
A computerized household activity scheduling survey   总被引:7,自引:6,他引:1  
Household activity scheduling is widely regarded as the underlying mechanism through which people respond to emerging travel demand management policies. Despite this, very little fundamental research has been conducted into the underlying scheduling process to improve our understanding and ability forecast travel. The experimental survey approach presented in this paper attempts to fill this gap. At the core of the survey is a Computerized Household Activity Scheduling (CHASE) software program. The program is unique in that it runs for a week long period during which time all adult household members login daily to record their scheduling decisions as they occur over time. An up-front interview is used to define a household's activity agenda and mode availability. A sample of 41 households (66 adults and 14 children) was used to assess the performance of the survey. Analysis focuses on times to completion, daily scheduling steps, activity-travel patterns, and scheduling time horizons. Overall, the results show that the computer-based survey design was successful in gathering an array of information on the underlying process, while minimizing the burden on respondents. The survey was also capable of tracing traditionally observed activity-travel outcomes over a multi-day period with minimal fatigue effects. The paper concludes with a detailed discussion on future survey design, including issues of instrument bias, use of the Internet, and improved tracing of spatial behaviour. Future use of the survey methodology to enhance activity-travel diary surveys and stated responses experiments is also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
This paper addresses the theoretical and empirical issues involved in modeling complex travel patterns. Existing models have the shortcoming of not representing the interdependencies among trip links in trip chains with multiple non-home stops. A theoretical model based on utility theory and explicitly accounting for the trade-offs involved in the choice of multiple-stop chains is developed. Using this theoretical model, utility maximizing conditions for a household's choice of a daily travel pattern are derived. The optimum travel pattern is described in terms of the number of chairs (tours) traveled on a given day and in terms of the number of stops (sojourns) made on each of those chains. For a given household, the form of the optimum pattern is a function of the transportation expenditures (time, cost) required to reach potential destinations. Constraints on the conditions of optimality due to the limited and discrete nature of travel pattern alternatives are also considered. Parameters of the general utility function were estimated empirically using actual travel data derived from a home interview survey taken in Washington, D.C. The multinomial logit model is used to relate utility scores for the alternative travel patterns to choice probabilities. The resulting parameter estimates agree with theoretical expectations and with empirical results obtained in other studies. In order to demonstrate the empirical and theoretical implications of the model, forecasts for various transportation policies (e.g., gasoline price increases, transit fare reductions), as made by this model and by other less complex models, are compared. The results of these comparisons indicate the need for expanding the scope of existing travel forecasting models to explicit considerations of trip chaining behavior.  相似文献   

8.
This study aims to improve a previously-developed methodology for predicting the traffic impacts of mixed-use developments (MXDs). In 31 diverse metropolitan regions across the United States, we collected consistent regional household travel survey data and computed built environment characteristics—D variables—of MXDs. Multilevel modeling (MLM) was employed to predict the probability of trips captured internally within MXDs, walking on internal trips, and travel mode choice on external trips, by trip purpose. Larger, denser, mixed-use, and more walkable MXDs show a larger share of trips internally, compared with conventional suburban developments. Those MXDs with good access to transit, employment, and destinations also show higher levels of walking, biking, and transit shares on external trips, thus helping to reduce traffic impacts on the external road network. Perhaps the most impressive finding is that well-designed MXDs have walk shares of more than 50 percent on internal trips. A k-fold cross-validation supports the robustness of our analyses.  相似文献   

9.
A GA-based household scheduler   总被引:1,自引:0,他引:1  
One way of making activity-based travel analysis operational for transport planning is multi-agent micro-simulation. Modelling activity and trip generation based on individual and social characteristics are central steps in this method. The model presented here generates complete daily activity schedules based on the structure of a household and its members’ activity calendars. The model assumes that the household is another basic decision-making unit for travel demand aside from individual mobility needs. Results of the model are schedules containing complete information about activity type and sequence, locations, and means of transportation, as well as activity start times and durations. The generated schedules are the outcome of a probabilistic optimisation using genetic algorithms. This iterative method improves solutions found in a random search according to the specification of a fitness criterion, which equals utility here. It contains behavioural assumptions about individuals as well as the household level. Individual utility is derived from the number of activities and their respective durations. It is reduced by costs of travelling and penalties for late, respectively early arrival. The household level is represented directly by the utility of joint activities, and indirectly by allocation of activities and means of transportation to household members. The paper presents initial tests with a three-person household, detailing resulting schedules, and discussing run-time experiences. A sensitivity analysis of the joint utility parameter impact is also included.  相似文献   

10.
Using the conceptual framework of time–space geography, this paper incorporates both spatio-temporal constraints and household interaction effects into a meaningful measure of the potential of a household to interact with the built environment. Within this context, personal accessibility is described as a measure of the potential ability of individuals within a household not only to reach activity opportunities, but to do so with sufficient time available for participation in those activities, subject to the spatio-temporal constraints imposed by their daily obligations and transportation supply environment. The incorporation of activity-based concepts in the measurement of accessibility as a product of travel time savings not only explicitly acknowledges a temporal dimension in assessing the potential for spatial interaction but also expands the applicability of accessibility consideration to such real-world policy options as the promotion of ride-sharing and trip chaining behaviors. An empirical application of the model system provides an indication of the potential of activity-based modeling approaches to assess the bounds on achievable improvements in accessibility and travel time based on daily household activity patterns. It also provides an assessment of roles for trip chaining and ride-sharing as potentially effective methods to facilitate transportation policy objectives.  相似文献   

11.
Although it is important to consider multi-day activities in transportation planning, multi-day activity-travel data are expensive to acquire and therefore rarely available. In this study, we propose to generate multi-day activity-travel data through sampling from readily available single-day household travel survey data. A key observation we make is that the distribution of interpersonal variability in single-day travel activity datasets is similar to the distribution of intrapersonal variability in multi-day. Thus, interpersonal variability observed in cross-sectional single-day data of a group of people can be used to generate the day-to-day intrapersonal variability. The proposed sampling method is based on activity-travel pattern type clustering, travel distance and variability distribution to extract such information from single-day data. Validation and stability tests of the proposed sampling methods are presented.  相似文献   

12.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way.  相似文献   

13.
To date only limited research has quantified differences between female and male activity patterns, and analyses at an individual activity level are scarce. Past research has focused on investigating gender differences in mobility levels based on observed travel patterns, especially those related to commuting. This article reports new evidence based on analyses of a household activity survey data-set collected from a Canadian city – Calgary – in 2001. Results show that contemporary females and males have a very similar activity participation pattern. On the other hand, analyses applied to activity starting times support the view that there are minor gender differences in time-of-day choices. In addition, duration and survival analyses through log-rank and Wilcoxon tests show that women and men tend to spend more or less time on some of the 10 weekend/weekday activities, and thus indicate that they share different domestic and societal responsibilities: males tend to spend longer time for out-of-home activities, such as work, school, social, and out-of-town; whereas females contribute more to domestic work, including shopping, eating, and religious activity. In general, this article contributes new evidence to gender differences in activity participation, time-of-day, and duration choices at the individual activity level. Such differences may influence travelers’ time, mode, and location choices and thus have important implications for the complexity of an activity-based modeling framework. These implications are discussed along with recommendations for incorporating gender differences in an activity-based modeling framework.  相似文献   

14.
This paper presents a policy sensitive approach to modeling travel behavior based on activity pattern analysis. A theoretical model of complex travel behavior is formulated on a recognition of a wide range of interdependencies associated with an individual's travel decisions in a constrained environment. Travel is viewed as input to a more basic process involving activity decisions. A fundamental tenet of this approach is that travel decisions are driven by the collection of activities that form an agenda for participation; the utility of any specific travel decision can be determined only within the context of the entire agenda. Based on the theoretical model of complex travel behavior, an operational system of models, STARCHILD (Simulation of Travel/Activity Responses to Complex Household Interactive Logistic Decisions), has been developed to examine the formation of household travel/activity patterns, and is presented in a companion paper (Recker et al., 1986).  相似文献   

15.
SMART: simulation model for activities, resources and travel   总被引:1,自引:0,他引:1  
This paper proposes the development of an activity-based model of travel that integrates household activities, land use patterns, traffic flows, and regional demographics. The model is intended as a replacement of the traditional Urban Transportation Planning System (UTPS) modeling system now in common use. Operating in a geographic-information system (GIS) environment, the model's heart is a Household Activity Simulator that determines the locations and travel patterns of household members daily activities in 3 categories: mandatory, flexible, and optional. The system produces traffic volumes on streets and land use intensity patterns, as well as typical travel outputs. The model is particularly well suited to analyzing issues related to the Clean Air Act and the Intermodal Surface Transportation Efficiency Act (ISTEA). Implementation would, ideally, require an activity-based travel diary, but can be done with standard house-interview travel surveys. An implementation effort consisting of validation research in parallel with concurrent model programming is recommended.  相似文献   

16.
Although smart-card data were expected to substitute for conventional travel surveys, the reality is that only a few automatic fare collection (AFC) systems can recognize an individual passenger's origin, transfer, and destination stops (or stations). The Seoul metropolitan area is equipped with a system wherein a passenger's entire trajectory can be tracked. Despite this great advantage, the use of smart-card data has a critical limitation wherein the purpose behind a trip is unknown. The present study proposed a rigorous methodology to impute the sequence of activities for each trip chain using a continuous hidden Markov model (CHMM), which belongs to the category of unsupervised machine-learning technologies. Coupled with the spatial and temporal information on trip chains from smart-card data, land-use characteristics were used to train a CHMM. Unlike supervised models that have been mobilized to impute the trip purpose to GPS data, A CHMM does not require an extra survey, such as the prompted-recall survey, in order to obtain labeled data for training. The estimated result of the proposed model yielded plausible activity patterns that are intuitively accountable and consistent with observed activity patterns.  相似文献   

17.
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models.The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler’s out-of-home activity-tour time-use patterns.  相似文献   

18.
A structural equations analysis of commuters' activity and travel patterns   总被引:3,自引:0,他引:3  
An exploratory analysis of commuters' activity and travel patterns was carried out using activity-based travel survey data collected in the Washington, DC metropolitan area to investigate and estimate relationships among socio-demographics, activity participation, and travel behavior. Structural equations modeling methodology was adopted to determine the structural relationships among commuters' demographics, activity patterns, trip generation, and trip chaining information. Three types of structural equations model systems were estimated: one that models relationships between travel and activity participation, another that captures trade-offs between in-home and out-of-home activity durations, and a third that models the generation of complex work trip chains. The model estimation results show that strong relationships do exist among commuters' socio-demographic characteristics, activity engagement information, and travel behavior. The finding that significant trade-offs exist between in-home and out-of-home activity participation is noteworthy in the context of in-home vs. out-of-home substitution effects. Virtually all of the results obtained in this paper corroborate earlier findings reported in the literature regarding relationships among time use, activity participation, and travel. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
This paper presents an empirical analysis of non-workers’ activity-travel behaviour from Bangalore city, India. The paper builds a causal model—to describe the relationships among socio-demographics, activity-participation, and travel behaviour of non-workers—following structural equation modelling methodology. The results indicate that in-home maintenance activity-duration drives the time allocation decisions of non-workers. The model also shows the presence of ‘time-budget’ effects i.e., excess travel time cuts into in-hhome discretionary activity duration, implying the trade-off between daily travel time and in-home discretionary activity duration. The out-of-home activity durations of non-workers are found to be insensitive to travel time—an important finding of this research. The model also suggests that mixed residential development reduce travel distance and indirectly contribute to more trips. An indirect effect of mixed residential development on daily travel distance offsets the direct effect, which leads to a limited total effect of this variable on travel distance. The basic model was expanded further by separating the time spent on others’ activity (children and elders) from in-home maintenance activity duration. The stable model reveals that the time spent on others’ activity also influences in-home and out-of-home activities, and travel behaviour. This indicates that the time spent on others’ activity is an important time allocation of its own.  相似文献   

20.
The public transport networks of dense cities such as London serve passengers with widely different travel patterns. In line with the diverse lives of urban dwellers, activities and journeys are combined within days and across days in diverse sequences. From personalized customer information, to improved travel demand models, understanding this type of heterogeneity among transit users is relevant to a number of applications core to public transport agencies’ function. In this study, passenger heterogeneity is investigated based on a longitudinal representation of each user’s multi-week activity sequence derived from smart card data. We propose a methodology leveraging this representation to identify clusters of users with similar activity sequence structure. The methodology is applied to a large sample (n = 33,026) from London’s public transport network, in which each passenger is represented by a continuous 4-week activity sequence. The application reveals 11 clusters, each characterized by a distinct sequence structure. Socio-demographic information available for a small sample of users (n = 1973) is combined to smart card transactions to analyze associations between the identified patterns and demographic attributes including passenger age, occupation, household composition and income, and vehicle ownership. The analysis reveals that significant connections exist between the demographic attributes of users and activity patterns identified exclusively from fare transactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号