首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
智能网联卡车车队有望成为网联自动驾驶率先应用的场景之一,本文针对智能网联卡车车队混合交通流通行能力开展研究。首先,以智能网联卡车车队、人工驾驶卡车及人工驾驶小汽车构成的随机混合交通流为研究对象,考虑智能网联卡车车队规模空间分布特征,分析混合交通流中10种跟驰行为类型,理论推导其概率表达式,进而构建智能网联卡车车队混合交通流通行能力的通用性分析方法。然后,考虑实际交通流运行中卡车分布的随机性,将智能网联卡车车队混合交通流分为优势流、随机流和劣势流3种态势,以此提升混合交通流通行能力分析方法的普适性。最后,选择实测数据标定的跟驰模型进行案例分析,验证理论分析方法的有效性。研究结果表明:智能网联卡车比例提高或其车队规模增大均有利于3种态势混合交通流中车辆转换系数及相对熵的减小,从而可有效提升混合交通流通行能力。不同智能网联卡车比例条件下,智能网联卡车车队随机分布最优车队规模为2~4辆,同时,优势流、随机流和劣势流3种混合交通流通行能力依次递减。研究结果揭示了智能网联卡车车队混合交通流通行能力提升的内在机理,为未来智能网联卡车车队的运营管理提供方法支撑。  相似文献   

2.
为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响.结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态...  相似文献   

3.
为解决未来自动驾驶专用车道的规划设计问题,本文提出了一种自动驾驶车与人工驾驶车混合交通流路段阻抗函数模型.首先,分析了自动驾驶专用车道的设置对混合交通流中车辆跟驰模式的影响;其次,在此基础上,引入微观跟驰驾驶模型,推导了不同自动驾驶车辆渗透率条件下的路段通行能力函数,分析了自动驾驶车辆对路段通行能力的影响;然后,将混合交通流通行能力引入经典的BPR函数,推导了考虑自动驾驶的混合交通流路段阻抗函数模型;最后,设计了数值实验讨论了自由流速度(自由流行程时间)、自动驾驶车辆的渗透率和安全车头时距对路段阻抗的影响.结果 表明:(1)当路段流量较小时,自动驾驶车辆的引入对路段阻抗行程时间的影响较小;(2)当自动驾驶车的渗透率为30%时,设置自动驾驶专用车道对行程时间的改善最为明显;(3)当流量较小时,自动驾驶车辆渗透率对路段阻抗行程时间的影响较小,而随着路段流量的增大,自由流速度和自动驾驶车辆渗透率将共同决定路段的行程时间.相关成果可为未来自动驾驶专用车道的规划与设计提供理论支撑.  相似文献   

4.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

5.
分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control,ACC)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型,从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点;将目前主流ACC/CACC车辆跟驰模型分为3类:基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型,总结3类车辆跟驰模型的建模思路与主要优缺点;从道路通行能力、交通安全和交通流稳定性3方面,分析了ACC/CACC车辆对交通流特性的影响,及其研究现状与未来发展趋势。研究结果表明:不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别,ACC/CACC车辆有利于提升交通安全性,但由于缺乏统一的安全性评价指标,难以量化ACC/CACC车辆对交通安全性的影响程度;小规模实车试验验证了ACC车辆具有不稳定的交通流特性,否定了ACC车辆稳定性数值仿真结果,而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性,因此,完全依赖于计算机仿真试验无法获得令人信服的结论,实车试验是ACC/CACC研究的必要途径;为了完善ACC/CACC在交通领域的研究,应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。  相似文献   

6.
智能网联异质交通流混合特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能提高道路通行能力,随机仿真实验验证了理论推导的正确性;最后,引入考虑车辆排列方式的相对熵,从而定量描述异质车流的有序性,阐明了智能网联车辆(connected and autonomous vehicle,CAV)改善交通状况的本质原因. 研究结果表明:随着智能网联车渗透率的增加,通行能力增加,在智能网联化前期,渗透率的增加对通行能力提升较小,最高仅提升23.5%,中、后期通行能力最高能提升125.0%;在一定交通密度下,CAV渗透率与流量呈现正相关,相对熵与流量呈现负相关;智能网联车处于分离态时相对熵较小,分离态对随机混合的通行能力的提升随着CAV渗透率的增加而降低.   相似文献   

7.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

8.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

9.
针对混合交通流中智能网联车辆(Connected and Autonomous Vehicles, CAVs)和人工驾驶车辆的交织干涉问题,本文在传统交通流统计理论模型和一阶连续介质模型的基础上,通过引入智能驾驶员跟驰模型(Intelligent driver model, IDM)和协同自适应巡航控制模型(Cooperative Adaptive Cruise Control, CACC),构建人工驾驶车辆和CAVs的混合交通流偶发拥堵演化模型,探索CAVs混入和诱导干涉措施对混合交通流偶发性拥堵传播规律的影响。实验选取重庆市华陶立交至巴南立交路段为路网原型,对CAVs不同渗透率( Pc )下的路段拥堵演化情况进行仿真。实验结果表明:CAVs渗透率越高,混合流流量、占有率和速度的改善情况越显著,但只有当 Pc ≥ 0.2 时,网联车辆对拥堵消散的改善效果才较为明显;Pc ≤ 0.8 时,干涉措施下,拥堵消散状态的持续时间约为不采用干涉措施的 50%;当 Pc = 1.0 时,网联车辆的通行能力是纯人工驾驶交通流的2.34倍;分别在非干涉措施和干涉措施下计算拥堵评价指标,与仿真结果进行对比,最大相对误差在5.38%之内,验证了模型的准确性。研究成果对疏散交通拥堵具有重要意义。  相似文献   

10.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、 加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在 混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH 实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m∙s-1 ,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和 RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持。  相似文献   

11.
交通流稳定性分析是研究交通拥堵形成机理、车队队列控制的基础,面向智能网联环境下的混合交通流队列线性稳定性分析已成为近年来的研究热点. 根据受到的扰动大小和范围,介绍了线性稳定性、非线性稳定性、局部稳定性和队列稳定性的相关概念,并指出了交通流队列稳定性的基本判别准则. 基于控制理论,回顾了交通流车队队列线性稳定性条件的经典解析方法,其中,特征方程法评估了交通流内部扰动的增长速度,传递函数法依托于拉普拉斯变换构建了扰动的传递关系. 从经典跟驰模型、考虑时延的跟驰模型和考虑多前车驾驶信息反馈的跟驰模型出发,系统分析并总结了国内外学者对于混合交通流稳定性问题的研究现状,同时回顾了交通流稳定性理论研究在车队队列控制等方面的实验和工程应用. 最后,展望了混合交通流稳定性分析领域的研究前景,指出了在后车跟驰行为、智能网联汽车的交互协同、复杂混合交通流等几个方面是今后需要重点研究的领域.   相似文献   

12.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

13.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

14.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

15.
为进一步提高混合交通环境下车辆的行车效率与交通流的稳定性,在考虑后视效应的基础上,融合多辆前车速度与加速度等状态信息,以指数平滑方式构建了网联自动驾驶车辆(CAV)跟驰模型;在此基础上,研究了前后方车辆数和状态信息完整度对模型稳定性的影响,结合Lyapunov第一方法和线性谐波微扰法进行了线性稳定性分析,并确定了模型最优参数;利用混合交通环境特性,在考虑通信信息丢失的情况下提出了CAV在不同位置和状态下的跟驰策略,并在该策略支撑下进行了不同CAV渗透率的车辆启动、车辆刹车停止、环形道路3个典型场景下的数值仿真。研究结果表明:在刹车停止场景中,全部车辆的停止波速最大提高了26.1%;在车辆启动场景中,启动波速最大提高了15.5%,车辆加速度和速度变化更为平缓;在环形道路场景中,当混合交通流中CAV渗透率由40%提高至100%时,在较大扰动条件下车辆的平均速度波动时间相较于低CAV渗透率场景下降了44.8%,波峰下降了5.7%,波谷上升了19.4%,而CAV渗透率较低时提出的优化策略对混合交通流的改善并不明显。由此可见,在当前构建实际混合交通环境与开展CAV实车试验比较困难的情况下,该跟驰...  相似文献   

16.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

17.
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,智能网联车辆(Connected and Automated Vehicle,CAV)、自动驾驶车辆(Autonomous Vehicle,AV)和人工驾驶车辆(Human-driven Vehicle,HDV)混行的状态将在未来一段时间内存在。在混行条件下,车辆间的交互影响模式将发生变化。本文以HDV跟驰AV的驾驶行为为研究对象,通过分析驾驶实验数据将跟驰AV时HDV的驾驶风格量化并分为迟疑型、平稳型和信赖型三类。同时考虑驾驶风格、车辆的转弯能力和转弯半径等参数改进智能驾驶人模型(Intelligent Driver Model,IDM),建立了前车为AV时的HDV跟驰模型。该模型通过对三类不同风格HDV跟驰AV时的驾驶参数的标定,能根据不同跟驰风格采取相应的跟驰策略。经数据拟合检验,该模型在启动加速、匀速行驶和制动减速阶段均能以较高精度拟合实际驾驶数据,其中直行跟驰的平均拟合精度为96.2%,转弯跟驰的平均拟合精度为91.4%。可见,本文提出的模型可以刻画HDV跟驰AV时的行为特征。在目前难以进行大规模混流实车实验的情况下...  相似文献   

18.
为了提高网联信号交叉口车路协同控制对真实交通环境的适应性,以智能网联汽车与网联人工驾驶汽车混行的典型交通应用场景为研究对象,通过构建八相位网联信号交叉口,研究了混行环境下的交通信号和网联车辆轨迹车路协同优化控制方法;在对场景中的网联车辆运动学特性和跟驰行为进行建模的基础上,构建了一种混行车辆编队方法;基于混行车队模型、安全约束与燃油消耗模型,建立了基于滚动优化的交通信号-车辆轨迹协同优化控制方法;基于异步分层优化思路,将该协同控制问题分解为上层交通信号优化与下层车辆轨迹优化两方面,以交叉口车辆行驶延误时间和燃油消耗量为优化目标,利用遗传算法和“三段式”轨迹优化法分别对交通信号优化问题与车辆轨迹优化问题进行求解;对不同稳态车速与智能网联汽车渗透率下构建的混行交通流的稳定性进行了验证,并通过仿真测试分析了所提出的协同优化控制方法的控制效能与关键参数对控制效能的影响。分析结果表明:在不同交通流量与智能网联汽车渗透率下,提出的控制方法均可有效提升交叉口通行效率与燃油经济性;在完全渗透环境下,较固定配时交通信号控制方法最高可分别提升57.3%和13.3%;随着智能网联汽车渗透率的增加,其控制效能不断提高,较无渗透条件最高可分别提升42.0%和14.2%;即使智能网联汽车渗透率仅达到20%,较无渗透条件也可以在交通效率方面实现20.4%的显著改善;较长的交通信号周期与较短的网联人工驾驶汽车驾驶人反应时间有助于协同控制效能的提升。   相似文献   

19.
为研究智能网联车辆(CAV)对交通流稳定性的影响机理,对CAV车辆与人工车辆(HMV)构成的异质交通流,先建立车道管理策略下的交通流分配模型,提出车队管理策略下的车辆编队规模计算方法;再基于CAV与HMV车辆的跟驰模型,运用李雅普诺夫理论,搭建交通流稳定性分析框架;最后,构建异质交通流稳定性判别式,对比分析在不同管理策略下异质交通流稳定性的演变机理。研究结果表明:在随机混行条件下,当车辆速度大于23.12 m/s或CAV车辆的渗透率高于92%时,异质交通流处于恒稳定的状态;在车道管理策略条件下,当CAV车辆的渗透率低于60%时,异质交通流趋于稳定,随着CAV车辆渗透率的增大,通用车道稳定性开始逐级变差;当车辆采取编队控制算法且CAV车辆渗透率大于19%时,异质交通流处于稳定状态。CAV车辆在道路中随机混行,会对交通流的稳定性造成不良影响,而通过车道管理和编队控制,交通流的稳定性得到了明显改善。该研究可为智能网联汽车的安全管控及相关交通规划提供理论指导与借鉴。  相似文献   

20.
分析近年来智能网联环境下交通流波动消除策略的研究进展,根据模型构建的技术手段将其分为三类:跟驰模型稳定性解析控制、交通流波动传播轨迹控制、强化学习驾驶行为优化控制。回顾各类策略的研究现状与模型机理,对比讨论各类控制策略的优势与不足,并从技术背景、研究场景、算法流程和应用理论方面提出智能网联环境下交通流波动消除策略的未来深化研究方向,包括考虑多车道道路环境、交通流微观机理、车辆冲突博弈的复杂情境,考虑宏微观智能网联车控制与交通流主动控制的融合优化,考虑数据缺陷、系统不确定和环境扰动下系统可扩展性和鲁棒性提升,以期为了解交通流波动消除研究进展、提升智能网联环境下交通流波动控制效果提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号