首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。  相似文献   

2.
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,智能网联车辆(Connected and Automated Vehicle,CAV)、自动驾驶车辆(Autonomous Vehicle,AV)和人工驾驶车辆(Human-driven Vehicle,HDV)混行的状态将在未来一段时间内存在。在混行条件下,车辆间的交互影响模式将发生变化。本文以HDV跟驰AV的驾驶行为为研究对象,通过分析驾驶实验数据将跟驰AV时HDV的驾驶风格量化并分为迟疑型、平稳型和信赖型三类。同时考虑驾驶风格、车辆的转弯能力和转弯半径等参数改进智能驾驶人模型(Intelligent Driver Model,IDM),建立了前车为AV时的HDV跟驰模型。该模型通过对三类不同风格HDV跟驰AV时的驾驶参数的标定,能根据不同跟驰风格采取相应的跟驰策略。经数据拟合检验,该模型在启动加速、匀速行驶和制动减速阶段均能以较高精度拟合实际驾驶数据,其中直行跟驰的平均拟合精度为96.2%,转弯跟驰的平均拟合精度为91.4%。可见,本文提出的模型可以刻画HDV跟驰AV时的行为特征。在目前难以进行大规模混流实车实验的情况下...  相似文献   

3.
科学合理的微观交通流仿真模型是研究交通控制手段有效性的关键.本文结合一种考虑驾驶员视野内前后多车影响的跟驰策略,建立了连续型元胞自动机交通流模型.仿真实验表明,仿真数据与实测数据有较好的拟合性,仿真得到的 K-Q、K-V和 Q-V图能较好地反映实际道路交通流的失稳现象,所建立的模型具有适应不同场景的兼容性与灵活性,能够作为研究我国实际道路交通流问题的仿真工具.  相似文献   

4.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

5.
科学合理的微观交通流仿真模型是研究交通控制手段有效性的关键.本文结合一种考虑驾驶员视野内前后多车影响的跟驰策略,建立了连续型元胞自动机交通流模型.仿真实验表明,仿真数据与实测数据有较好的拟合性,仿真得到的 K-Q、K-V和 Q-V图能较好地反映实际道路交通流的失稳现象,所建立的模型具有适应不同场景的兼容性与灵活性,能够作为研究我国实际道路交通流问题的仿真工具.  相似文献   

6.
与车辆跟驰理论统一的一维交通流动力模型研究   总被引:2,自引:0,他引:2  
从交通流的连续性假设开始将交通流中的每一个参数(包括交通压力)都在流体流中 找到了恰当的比拟.通过理论推导,得出了类似一维可压缩理想流体流动的交通流连续性方 程、欧拉微分方程和动量方程.并从一维定常交通流的分析研究中,得出了交通压力的数学表 达式.从而得出了由连续性方程、欧拉微分方程、交通压力表达式和状态方程构成的一维交通 流动力模型,论证了该模型与车辆跟驰理论是统一的.  相似文献   

7.
通过对港区交通特性的分析,从分析车辆跟驰行为中的基本特征入手,结合定量和定性的方法,研究港区车辆上坡行驶特性,并通过修正车辆及线形参数,建立了仿真模型来获取合理的道路线形参数.  相似文献   

8.
通过对城市交通事故影响下交通流的分析,结合元胞自动机的原理并进行了相关改进,构建了交通事故影响下车辆的跟驰模型以及变道绕行模型.此外,利用MATLAB编写仿真程序,并由仿真结果分析了在交通事故影响下车流速度的传播特点,发现障碍物对整体交通流的影响要远远超过实际上的物理范围,且影响的消散也非线性.  相似文献   

9.
为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响.结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态...  相似文献   

10.
沙尘环境下,沙、尘土及其他异物会影响驾驶员的视线,让驾驶员额外增加辨别道路条件和周围交通状况的反应时间,带来一定的交通安全隐患.为探讨沙尘环境对道路交通流的影响,本文建立了基于沙尘环境下驾驶行为的跟驰模型(SDM).线性稳定性分析和数值模拟结果表明:沙尘环境下,SDM的稳定区域缩小,交通流出现小的扰动后,难以恢复到稳定状态;而且,交通流受沙尘影响越严重,车辆速度的离散性越大,加速度的波动幅度也越大.可见,沙尘环境使交通流处于不安全的状态,易引发道路交通事故.  相似文献   

11.
基于对港区交通特性的分析,从分析车辆跟驰行为中的基本特征入手,结合定量和定性的方法,研究港区车辆上坡行驶特性,并通过修正车辆及线形参数,建立仿真模型来获取合理的道路线形参数。通过工程实例,仿真结果得到验证。  相似文献   

12.
把车流密度的跳跃性变化作为车流波现象,在高峰小时或者异常情况下(如雨、雪、雾等异常天气),快速路的瓶颈地段经常出现堵塞以及由堵塞引起的车流波。车流波不仅影响瓶颈点下游车辆的运行,还会降低瓶颈点上游路段的有效通过能力。通过大量的交通数据采集,构建基于模糊推理的驾驶员感知——预测行为模型和车流波传播条件下驾驶员微观跟驰模型。结果表明,模型可以有效、准确地模拟车流波传播过程中驾驶员行为。  相似文献   

13.
利用元胞自动机,建立了冰雪条件下城市道路单车道和双车道交通流微观模型.针对冰雪条件下驾驶员出于安全考虑降低车速、保持较大车间距的现象,细化了元胞尺寸,引入反映不同冰雪条件的速度因子参数和间距因子参数.通过数值模拟,得出了正常天气和冰雪天气下的车辆速度、密度、流量间的关系曲线,并分析了不同冰雪条件对交通流的影响.研究发现,中雪条件下的车速波动程度及范围最大;基本图显示冰雪条件对于临界密度、最大流量等参数影响较大;冰雪条件下的亚稳回滞现象不明显,未出现换道频率局部最大值.  相似文献   

14.
近年来不良天气频发,对城市交通流运行影响较大。从驾驶行为角度,利用驾驶模拟技术,搭建城市快速路场景,分析多种雨、雪、雾等不良天气对直线路段下跟驰行为的影响。利用单因素方差分析方法,研究不同天气条件下车头时距、车头间距振幅、最小跟驰车速差、最大跟驰车速差以及跟驰加速度等指标的显著性,进而使用主成分分析方法研究不良天气对道路交通流的影响。研究结果表明:车头时距、车头间距振幅、最小跟驰车速差在不同天气条件下具有显著性差异,且一般随天气恶劣程度增加,车头时距与车头间距振动幅度变大,最小跟驰车速差减小。不同天气条件对交通流顺畅性影响从大到小依次为大暴雪、大雨、大暴雨、大雾、中雨、雾、强浓雾、大雪、轻雾、小雨、晴天。  相似文献   

15.
为研究施工区网联车与普通车混行状态下的车流跟驰及换道行为,分析网联车的区域内通讯及更小安全车距等特性,改进普通车元胞自动机模型的减速规则和随机慢化规则,构建网联车跟驰模型。建立普通车和网联车在施工区不同区段的换道意向规则,基于车距采集和空位排序算法建立网联车在通讯区域的预期换道和施工区域的强制换道模型,结合普通车换道模型模拟施工区混行车辆的换道规则及车流分布规律。采用算例验证模型,运用MATLAB仿真,多次实验消除随机因素影响,结果验证了网联车对扩大通行能力,提高平均车速及降低走行时间的有效性;不同比例下的换道点分布显示,网联车比例越高,预期换道区的换道点越靠近强制换道区,且强制换道点越靠前;而普通车换道点分布受混行车流比例的影响较小。  相似文献   

16.
雨天环境下行车安全隐患突出,针对雨天环境车辆跟驰行为的追尾安全风险进行研究。首先,考虑雨天环境下车辆正常加减速以及急刹车2种条件,设计安全仿真场景,并基于实测自然驾驶数据标定的跟驰模型,进行跟驰行为安全风险仿真实验。其次,根据仿真数据,使用ITC、DRAC、DSS 3种不同类型的安全评价指标对不同降雨量以及不同跟驰场景进行安全风险评价。最后,采取统计检验的方法对ITC、DRAC、DSS 3种安全评价指标进行适用性分析。研究结果表明:在2种跟驰场景中,随着降雨量的增大,车辆跟驰行为中发生碰撞的风险均随之增大,同时潜在的碰撞风险时间也越长。以速度20 m/s、DSS指标为例,正常加减速场景不同天气状况下DSS指标所表示出有碰撞风险可能性的时间分别为:晴天0 s、小雨90.9 s、大雨100 s;急刹车场景不同天气状况下DSS指标所表示出有碰撞风险可能性的时间分别为:晴天7.0 s、小雨14.3 s、大雨20.7 s。针对不同降雨量以及跟驰场景,DSS评价指标的适用性均优于ITC评价指标和DRAC评价指标。  相似文献   

17.
分析驾驶员在冰雪条件下的驾驶行为特性,建立考虑驾驶员行为特性的跟驰模型,有助于丰富现有交通流理论.通过招募驾驶员开展实车跟驰试验,对比分析正常条件与冰雪条件下的驾驶行为差异.进而基于任务难度均衡理论构建包含人类因素参数的任务难度模块,引入改进后的智能驾驶员模型,并采用车辆轨迹数据对模型进行标定和有效性验证.研究表明:驾驶员在跟驰行驶过程中受外界刺激及自身驾驶能力影响时会对车辆行驶状态进行动态调整,试图保持期望间距,且速度与前车一致的状态;冰雪条件下驾驶员采取风险补偿行为,其车头时距波动幅度较正常条件收窄,模型引入人类因素参数可以较好地描述其差异性. 模型有效性验证表明,新模型在6个仿真场景中的表现都优于传统智能驾驶员模型,且表现出更好的鲁棒性.研究结果可为冰雪条件下的交通管理措施制定提供理论支持.  相似文献   

18.
在自然环境因素中,降雨事件对交通流时空特性有显著影响,对其量化有助于掌握雨天交通流时空特性的变化规律.为规避其他因素的影响,提出了对比各降雨事件下交通流时空特性分布统计量的量化方法.采集和处理状态值数据和降雨量数据,计算交通流时空特性值;根据降雨量大小,划分降雨事件等级;研究各降雨事件下交通流时空特性的分布类型,当分布类型一致时,通过对比分布统计量,量化降雨事件的影响;根据各降雨事件下交通流时空特性,绘制交通流时空特性Moran散点图,分析道路类型的转变方向和程度.研究表明,降雨事件等级与交通流状态值呈显著负相关,且降雨事件发生时,道路类型总体由低失效道路向高失效道路转变.  相似文献   

19.
道路网中存在着许多坡道路段,在进行驾驶特性分析时,人们通常将注意力放在下坡路段而忽略了爬坡路段的安全性研究。同时,在爬坡过程中,对通行能力影响最大的是货车,针对这一现象,引入交通流元胞自动机模型,利用爬坡路段纵坡度对其进行改进,选择谨慎型与激进型两种驾驶员分析其换道行为的差异性,建立了一种基于爬坡换道的交通流元胞自动机模型,并分析纵坡度对货车行驶速度的影响以及两种驾驶员爬坡换道的特性。仿真结果表明:坡道纵坡度对货车的速度有显著影响,同时两类驾驶员根据道路状况选择主动换道,若主导换道的驾驶员占比较高,就能显著提高道路的通行能力。  相似文献   

20.
把车流密度的跳跃性变化作为车流波现象,在高峰小时或者异常情况下(如雨、雪、雾等异常天气),快速路的瓶颈地段经常出现堵塞以及由堵塞引起的车流波.车流波不仅影响瓶颈点下游车辆的运行,还会降低瓶颈点上游路段的有效通过能力.通过大量的交通数据采集,构建基于模糊推理的驾驶员感知--预测行为模型和车流波传播条件下驾驶员微观跟驰模型.结果表明,模型可以有效、准确地模拟车流波传播过程中驾驶员行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号