首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
For bulk carriers in hogging, the most critical situation is the alternate hold loading (AHL) condition with odd numbered holds loaded with high density cargoes and even numbered holds empty. The effect of the local lateral pressure loads should be considered in the assessment of ultimate hull girder strength in the hogging and AHL conditions. In the present paper the ultimate strength of a Capesize bulk carrier hull girder under combined global and local loads in the hogging and AHL condition is extensively and systematically investigated using nonlinear finite element (FE) analysis with ABAQUS software. Since the bulk carrier used as a reference vessel in this study is an old design we also studied the effect of modified scantlings by multiplying the plate thickness in the bottom structure by a design modification factor (DMF). In particular, it should be noted that a DMF of 1.4 gives a design in accordance with the new CSR rules. Based on the results obtained by nonlinear FE analyses, a practical interaction equation is established between global hogging bending capacity and average external sea pressure over the bottom.  相似文献   

2.
This paper is the first of two companion papers concerning the ultimate hull girder strength of container ships subjected to combined hogging moment and bottom local loads. In the midship part of container ships, upward bottom local loads are usually larger than the downward ones. This leads to the increase of biaxial compression in the outer bottom plating and the reduction of the ultimate hull girder strength in the hogging condition. In this Part 1, the collapse behavior and ultimate strength of container ships under combined hogging moment and bottom local loads are analyzed using nonlinear finite element method. Buckling collapse behavior of bottom stiffened panels during the progressive collapse of a hull girder is closely investigated. It has been found that major factors of the reduction of ultimate hogging strength due to bottom local loads are (1) the increase of the longitudinal compression in the outer bottom and (2) the reduction of the effectiveness of the inner bottom, which is on the tension side of local bending of the double bottom. The obtained results will be utilized in the Part 2 paper to develop a simplified method of progressive collapse analysis of container ships under combined hogging moment and bottom local loads.  相似文献   

3.
This is the second of two companion papers dealing with nonlinear finite element modelling and ultimate strength analysis of the hull girder of a bulk carrier under Alternate Hold Loading (AHL) condition. The methodology for nonlinear finite element modelling as well as the ultimate strength results from the nonlinear FE analyses was discussed in the companion paper (Part 1). The purpose of the present paper is to use the FE results to contribute towards developing simplified methods applicable to practical design of ship hulls under combined global and local loads. An important issue is the significant double bottom bending in the empty hold in AHL due to combined global hull girder bending moment and local loads. Therefore, the stress distributions in the double bottom area at different load levels i.e. rule load level and ultimate failure load level are presented in detail. The implication of different design pressures obtained by different rules (CSR-BC rules and DNV rules) on the stress distribution is investigated. Both (partially) heavy cargo AHL and fully loaded cargo AHL are considered. Factors of influence of double bottom bending such as initial imperfections, local loads, stress distribution and failure modes on the hull girder strength are discussed. Simplified procedures for determination of the hull girder strength for bulk carriers under AHL conditions are also discussed in light of the FE analyses.  相似文献   

4.
This paper is the second of two companion papers concerning the ultimate hull girder strength of container ships subjected to combined hogging moment and bottom local loads. The nonlinear finite element analysis in Part 1 has shown that local bending deformation of a double bottom due to bottom lateral loads significantly decreases the ultimate hogging strength of container ships. In this Part 2, extending Smith's method for pure bending collapse analysis of a ship's hull girder, a simplified method of progressive collapse analysis of ultimate hogging strength of container ships considering bottom local loads is developed. The double bottom is idealized as a plane grillage and the rest part of the cross section as a prismatic beam. An average stress-average strain relationship of plate/stiffened plate elements employed in Smith's method is transformed into an average stress-average plastic strain relationship, and implemented in the conventional beam finite element as a pseudo strain hardening/softening behaviors. The extended Smith's method is validated through a comparison with nonlinear finite element analysis.  相似文献   

5.
采用非线性有限元法对中拱和中垂工况条件下碳纤维增强聚合物(Carbon Fiber Reinforced Polymer, CFRP)修复的浮式生产储卸油装置(Floating Production Storage and Offloading, FPSO)点蚀船体梁极限强度进行仿真分析。对比FPSO的完整船体梁、点蚀船体梁和CFRP修复的点蚀船体梁的中拱极限弯矩和中垂极限弯矩,分析CFRP对FPSO点蚀船体梁的修复效果,并分析胶层失效规律。结果表明,CFRP可为船舶的高效修复提供一种新的方式。  相似文献   

6.
散货船在装载矿石等重货时,通常只装载在奇数货舱内,这就是所谓的隔舱重载工况。在这种工况下,中间舱的双层底结构除受到总纵弯曲作用外,还会受到邻舱重货引起的局部弯曲作用,而且该局部弯曲的作用会降低中拱状态下船体梁的极限强度。文章提出了一种简易计算方法,顶边舱结构和底边舱结构可以看作两根梁,双层底结构可视作正交异性板,运用双梁理论和正交异性板理论可推导出局部弯曲的影响。然后,考虑该局部弯曲的作用,用Smith法计算船体梁的极限强度。最后,将文中方法计算的结果与FEM结果进行比较,并对结果进行了分析。  相似文献   

7.
The purpose of this paper is to provide a basis for the development of reliability-based design formats for ultimate hull girder strength checks for bulk carriers in hogging conditions under combined global and local loading and to estimate implied safety levels in current rule practices for hull girders. The effect of alternative definitions of characteristic still-water loads on the safety format and, hence, the safety factors is assessed. The effect of systematic (bias) model uncertainties associated with loads and strength on the reliability measures is investigated.  相似文献   

8.
The paper focuses on time-variant longitudinal strength of bulk carriers under corrosion wastage, applying both Taylor series expansion method and Monte Carlo simulation. Hull girder section modulus and ultimate bending moment capacity are determined, by classical beam theory and the commonly applied incremental-iterative approach, respectively. Two main aspects are fully discussed and investigated, according to the final recommendations of last ISSC Report. The former regards the covariance between annual corrosion rates of individual structural members, commonly assumed as uncorrelated. Really, as it is conceivable that a certain correlation exists, three different cases are investigated: uncorrelated variables, fully correlated variables, full correlation between structural members belonging to the same category of compartments. The latter investigates the probability density function of both hull girder section modulus and ultimate bending capacity, because the Central Limit Theorem cannot be applied when correlation among random variables exists. Finally, as a test example, the bulk carrier section, presented in the last ISSC benchmark study, is analysed.  相似文献   

9.
胡勇  崔维成 《船舶力学》2004,8(4):68-79
船体梁受到碰撞损伤后,必须有足够的剩余强度用以抵抗最大外弯矩,同时还需能够承受最大剪力.在众多类型的船舶中,散货船是一种抗剪能力较差的船型.对于其碰撞损伤后纵向剩余极限弯矩的研究已有较多的文献[2-7],而对于碰撞损伤后的剪切极限强度的研究目前还比较少.针对这一现状,本文的主要目的在于分析讨论散货船受到碰撞损伤后的极限承剪能力;分析结构几何尺寸,碰撞损伤形状以及边界条件等各种因素对碰撞破损船体抗剪能力的影响.为了方便起见,文中也给出了相应的回归经验公式.本文同时还推导了一个船体梁碰撞损伤后的初始屈服剪力计算公式.最后,本文以一艘散货船为例,计算分析其碰撞损伤后的抗剪能力,从中得出一些有益的结论.  相似文献   

10.
对单舷侧散货船板架因装卸货物等受损后的结构极限承载能力的影响进行了研究,采用非线性有限元软件ABAQUS,建立单舷侧散货船板架完整模型和4种损伤模型,进行了舷侧板架在垂向载荷、船体纵向载荷、以及包括剪切和侧向压力的组合载荷作用下的非线性有限元计算。结果表明,因1根肋骨与板材之间连接的不同损伤,导致了相邻的其他肋骨工作应力不同程度的增加,或多或少地削弱了板架的承载能力,尤其在组合载荷的作用下,当一根肋骨的脱焊长度达肋骨长度的2/3时,板架极限承载力可下降15%。  相似文献   

11.
22 000m3液化气船整船和舱段三维有限元强度分析   总被引:3,自引:0,他引:3  
对22000m^3液化气船进行了整船和舱段三有限元强度计算分析,建立了整船和船体主舱段的三维有限元结构模型。并通过节点力的自动加载技术和惯性平衡处理技术建立有限元模型的节点载荷,在中拱和中垂弯矩作用下,计算出本在压载和满载工况下的船体应力和变形,是后通过对本舱舱段的边界处理技术,计算出受船体总强度的船体舱段局部强度,对船体强度出判断,为改进船体结构设计提供依据。  相似文献   

12.
文章基于Smith法,根据国际船级社协会发布的2013版协调共同结构规范(HCSR)中破损模型、失效模式和载荷模型,考虑材料屈服、结构单元屈曲及后屈曲的特性,应用FORTRAN程序设计语言编写船体极限强度计算程序,以某76000吨散货船为算例,对完整船体的极限强度进行计算,对搁浅状态下破损船体的剩余强度进行计算并校核承载能力。通过在中拱和中垂工况下与其他规范的对比验证,2013版HCSR指定的剩余强度校核公式及船体梁载荷计算公式中选取的安全系数要求更高,校核更严格。  相似文献   

13.
Time-variant reliability analysis of a corroded bulk carrier in intact and damage conditions is performed by First-Order (FORM), Second-Order (SORM) Reliability Methods and Importance Sampling simulation. Annual failure probabilities are determined up to 25-year ship lifetime, accounting for time-variant corrosion wastage of structural members contributing to hull girder strength. Statistical properties of hull girder capacity are determined by Monte Carlo simulation, applying three correlation models among corrosion wastages of structural members contributing to hull girder strength, namely no correlation, full correlation and full correlation among wastages of structural members belonging to the same category of compartments. A modified incremental-iterative method is applied, to account for instantaneous neutral axis rotation, in case of asymmetrical damage conditions, as for collision and grounding events. Incidence of intact/damage condition, as well as correlation among corrosion wastages, on annual sagging/hogging time-variant failure probability is investigated and discussed. Time-variant sensitivity analyses for intact and damage conditions are also performed, to investigate the incidence of random variables' uncertainties on the attained failure probability. Finally, the bulk carrier section scheme, benchmarked in the last ISSC Report, is applied as test case.  相似文献   

14.
Corrosion pits with a circular cone shape are typically observed on coated hold frames of aged bulk carriers which carry exclusively coal and iron ore. In order to ensure the safety of these types of bulk carrier, it is necessary to understand the effect of pitting corrosion on the local strength of hold frames. In order to investigate this effect, a series of nonlinear finite-element (FE) analyses has been performed with pitted plates subjected to in-plane compressive loads and bending moments. It has been shown that the ultimate compression load or bending moment of pitted plates is smaller than that of uniformly corroded plates in terms of average thickness loss, and that predictions of the ultimate strength using the average thickness loss at the minimum cross section would be conservative. In order to establish a method of evaluating strength reduction due to pitting corrosion, it is important to identify the failure mode that would be most detrimentally affected by pitting corrosion. It was found that the reduction of the ultimate compressive load or bending moment due to pitting corrosion is smaller than that of the tensile strength in terms of equivalent thickness.  相似文献   

15.
循环弯曲载荷下船体梁的极限纵强度   总被引:2,自引:0,他引:2  
根据生破坏的强度准则,详细讨论了循环弯曲载荷下船体梁的非弹性变形性能。给出了循环弯曲载荷下船体梁极限强度的简化分析方法。进行了纵筋加强箱形薄壁梁模型的循环弯曲试验。理论计算与试验结果作了比较,两者吻合较好。  相似文献   

16.
复合材料船体纵向极限强度可靠性分析   总被引:2,自引:0,他引:2  
把船体甲板或船底板结构视为是一系列加筋板单元的组合,然后利用复合材料梁柱理论计算船体加筋板单元构件的极限承载能力,最后用Smith法计算复合材料船体的极限承载能力。由于复合材料船体纵向极限强度的极限状态方程不能简单地用船体各参数显式表达,故将近年发展起来的响应面法与JC法相结合,对复合材料船体纵向极限强度进行了可靠性分析。并讨论了影响船体纵向极限强度可靠性各变量的敏感性。  相似文献   

17.
水下爆炸中的气泡脉动载荷会造成舰船的鞭状运动,对其总纵强度产生很大威胁,是战争中造成船体总体毁伤与丧失生命力的主要原因之一。基于势流理论,推导并建立船体梁气泡弯矩的理论与计算方法,同时综合考虑气泡弯矩、船体静水弯矩、波浪弯矩及砰击弯矩等其他影响因素,建立一套完整的气泡作用下船体梁总纵强度估算方法。通过算例,校核典型工况下多种弯矩同时作用时船体梁的总纵强度。计算结果表明,气泡脉动载荷产生的总纵弯矩具有周期性鞭振特性,且数值大于其他弯矩。在评估舰船总纵强度与生命力时,应充分考虑气泡脉动载荷的影响。  相似文献   

18.
随着集装箱船的大型化,有限元计算已是必不可少的分析手段.舱段有限元分析的目的是根据实际装载的垂向弯矩计算,得出船舶中部构件的综合应力及变形.通过分析,得出船体主要纵向及横向的结构件尺寸.着重介绍利用MSC PATRAN和MSC/NASTRAN软件对某大型集装箱船的货舱舱段进行了结构强度的有限元分析.  相似文献   

19.
丁惊雷  吴思莹 《船舶工程》2019,41(S1):38-40
由于船体梁极限强度校核值不需要经船级社认可批准,不必纳入装载手册,仅需在设计阶段进行校核。实际设计工作中设计者会根据各自的需要和经验在结构吃水从出港到到港全程设计不同的中间状态,产生不同的实际操作最大静水弯矩值,供设计阶段校核船体梁极限强度的实际操作最大静水弯矩包络值值不且唯一性。文章以某实船为例进行计算分析,发现中间装载过程对弯矩包络值影响较大,不同的中间过程会产生不同的弯矩包络值,若以其中某组较小包络值作为设计阶段船体梁极限强度校核值,同时在船舶营运实际操作中又不对此船体梁极限强度进行校核,会给实际营运的的船舶带来安全隐患。为防止出现这一问题,建议将船体梁极限强度校核值作为强度衡准放入完工装载手册用以指导船长实际操作,确保所有实际操作状态的弯矩不得超过船体梁极限强度校核值。  相似文献   

20.
张帆  陈倩  吴嘉蒙 《船舶》2015,(Z1):23-29
协调版共同结构规范(CSR-H)对港口工况下船体梁强度和船体构件局部强度的要求与先前的油船共同结构规范(CSR-OT)基本一致,而相比散货船共同结构规范(CSR-BC)有明显变化。通过对比分析CSR-H和CSR-BC对于港口工况具体要求的差异,并结合实船数据分析,阐述基于CSR-H要求的港口工况对散货船结构设计的影响;并探讨针对符合CSR-H的散货船,如何合理选取船体梁许用静水弯矩值和许用静水剪力值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号