首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In magnetically levitated (Maglev) transportation systems, especially in electromagnetic suspension system (EMS) type Maglev systems, highly accurate prediction of ride quality is very important in order to reasonably relax guideway construction tolerances or constraints and stiffness while meeting the specification for ride comfort, thereby reducing guideway construction and maintenance costs. A full vehicle multi-body dynamic model is proposed, to facilitate a rigorous ride quality prediction of an EMS-type Maglev vehicle. Using the more realistic dynamic model proposed in this paper, the effects of guideway deflection limits, surface roughness, and levitation control system parameters on ride quality are studied numerically. The results obtained from the simulation studies are then used to facilitate a discussion of the trade-off between guideway smoothness and vehicle suspension. It can be expected that these studies could suggest cost-effective specifications for guideway construction tolerances and stiffness and EMS.  相似文献   

2.
Dynamic instability, that is, resonance, may occur on an electromagnetic suspension-type Maglev that runs over the elevated guideway, particularly at very low speeds, due to the flexibility of the guideway. An analysis of the dynamic interaction between the vehicle and guideway is required at the design stage to investigate such instability, setting slender guideway in design direction for reducing construction costs. In addition, it is essential to design an effective control algorithm to solve the problem of instability. In this article, a more detailed model for the dynamic interaction of vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on virtual prototyping, flexible guideway by a modal superposition method and levitation electromagnets including feedback controller into an integrated model. By applying the proposed model to an urban Maglev vehicle newly developed for commercial application, an analysis of the instability phenomenon and an investigation of air gap control performance are carried out through a simulation.  相似文献   

3.
For electromagnetic suspension (EMS) type urban Maglev vehicles using a U-shaped electromagnet, the levitation and guidance forces are generated by only one electromagnet. Although the levitation force is actively controlled by changing the voltage of the electromagnet, the guidance force is passively determined by the levitation force. In addition, the curve negotiation performance of EMS-type urban Maglev vehicles using a U-shaped electromagnet must be considered, because an urban guideway may have some curves with shorter radii. It is, therefore, necessary to predict the curving performance with the greatest accuracy possible, in order to improve electromagnetic suspension and establish guideway design specifications. The objective is to establish a new dynamic modelling technique, so as to achieve more realistic curving simulation and thus to more accurately evaluate the curving performance of an EMS-type Maglev vehicle. The use of a full vehicle multibody dynamic model is proposed, and is applied to the evaluation of curving performance. Design changes are also investigated to obtain the bogie design directions for minimising variation in the lateral air gap, which is a criterion for curving performance.  相似文献   

4.
The levitation control system in an electromagnetically levitated vehicle controls the voltage in its winding to maintain the air gap, which is the clearance between the electromagnet and the guideway, within an allowable range of variation, while strongly interacting with the flexible guideway. Thus, the vibrational characteristics of the guideway play an important role in the dynamics of Maglev (magnetically levitated) vehicles that utilise an active electromagnetic suspension system. In this study, the effects of the guideway's vibrational characteristics, such as natural frequency and damping, on the dynamics of the Maglev vehicle UTM-02 are numerically and experimentally analysed. From these analyses, the coupled equations of motion of the simplified vehicle–guideway model with three degrees of freedom are derived. Eigenvalues are calculated and frequency response analysis is also performed, in order to obtain a clear understanding of the dynamic characteristics resulting from the guideway's vibrational characteristics. To verify the numerical results, air gap tests of the urban Maglev vehicle UTM-02 are also carried out. These results lead us to recommend that the natural frequency of the guideway be decreased by increasing mass density rather than by decreasing rigidity, and that its damping ratio be increased in the Maglev vehicle UTM-02 employing a five-state feedback control law as a levitation control law.  相似文献   

5.
To reduce the vehicle/guideway-coupled vibration and improve the levitation stability of medium–low-speed maglev vehicle, a new type of levitation frame with air springs installed in the middle of the longitudinal beams is developed. This levitation frame with mid-set air spring (LFMAS) is studied comparatively with the levitation frame with end-set air spring (LFEAS) in electromagnetic levitation mode. The coupling degrees of the two kinds of frames are analysed by vertical motion equations; the energy consumptions for levitation control system to overcome the spring resistance in the whole adjustment process are calculated by the energy method; and the vibration accelerations are compared by dynamics analysis and bench test. The equations indicate that the LFMAS has a better decoupling effect and lower energy consumption than that of the LFEAS in any adjustment process. Simulation and test results show that the LFMAS can effectively reduce the vibration acceleration at a low-speed and achieve a better levitation stability in working conditions, validating that the LFMAS has a better levitation performance and adaptability to the guideway, which is attributed to the mechanical decoupling of the levitation module. It is expected that this new levitation frame will be very helpful in enhancing levitation stability and the ride index of medium–low-speed maglev vehicle.  相似文献   

6.
Summary The research and development (R & D) of maglev technology had made a great progress in China since the early 1980s. Especially, a 35 km-long Shanghai high-speed maglev railway employing the German Transrapid system began to be constructed on March 1, 2001. Based on the Transrapid system, the paper develops a 10-degree-of-freedom model of maglev vehicle running over three types of guideways with constant speed. Random guideway irregularities are discussed and taken into account for simulation of the vehicle response and for evaluation of the ride comfort. Using the direct time integration method and the discrete fast Fourier transform (DFFT), random responses of the maglev vehicle-guideway systems are obtained and analyzed. Numerical results show that the resonant frequency of car body acceleration response is 0.5–1 Hz, and there is a 2.2 Hz periodic vibration due to the periodic configuration of rigid piers when the maglev vehicle travels over the elevated-beam guideway. The car body acceleration power spectral density (PSD) curves meet well the ride quality criterion of the urban tracked aircushion vehicle (UTACV) and the maximum acceleration of car body is less than 0.05 g. Moreover, the Sperling ride index values are less than 2.5 as long as the operational speed is less than 450 km/h. It is concluded that the maglev vehicle ride quality is quite well.  相似文献   

7.
Maglev Vehicle/Guideway Vertical Random Response and Ride Quality   总被引:8,自引:0,他引:8  
Summary The research and development (R & D) of maglev technology had made a great progress in China since the early 1980s. Especially, a 35 km-long Shanghai high-speed maglev railway employing the German Transrapid system began to be constructed on March 1, 2001. Based on the Transrapid system, the paper develops a 10-degree-of-freedom model of maglev vehicle running over three types of guideways with constant speed. Random guideway irregularities are discussed and taken into account for simulation of the vehicle response and for evaluation of the ride comfort. Using the direct time integration method and the discrete fast Fourier transform (DFFT), random responses of the maglev vehicle-guideway systems are obtained and analyzed. Numerical results show that the resonant frequency of car body acceleration response is 0.5-1 Hz, and there is a 2.2 Hz periodic vibration due to the periodic configuration of rigid piers when the maglev vehicle travels over the elevated-beam guideway. The car body acceleration power spectral density (PSD) curves meet well the ride quality criterion of the urban tracked aircushion vehicle (UTACV) and the maximum acceleration of car body is less than 0.05 g. Moreover, the Sperling ride index values are less than 2.5 as long as the operational speed is less than 450 km/h. It is concluded that the maglev vehicle ride quality is quite well.  相似文献   

8.
This paper outlines various analytical approaches of varying complexities to model the wheel in the ride dynamic formulation of off-road tracked vehicles. In addition to a proposed model, four analytical models available in the literature are compared to study their effectiveness in modeling the wheel/track-terrain interaction for ride dynamic evaluation of typical high mobility tracked vehicles. The ride dynamic model used in this study describes the bounce-pitch plane motion of an armoured personnel carrier (Ml 13 APC) traversing over an arbitrary rigid terrain profile at constant speed. The ride dynamic response of the tracked vehicle is evaluated with different wheel models, and compared against field-measured ride data. The relative performance of different wheel models are assessed based on the accuracy of response prediction and associated computational time. The proposed wheel model is found to perform very well in comparison, and is equally applicable for the case of wheeled vehicles.  相似文献   

9.
基于对车辆悬架动力学性能的主观评估和试验数据的分析,统计了舒适型轿车在典型路况下的车轮跳动速度范围,考虑到阻尼对车辆平顺性、操控性和耐久性能的综合影响,给出了舒适型轿车减振器特性曲线的设计范围和趋势。  相似文献   

10.
The design and performance of a mechanical air gap controller for a maglev transport vehicle are described. The basic requirement for a functional design of the controller is derived first and its effectiveness is shown by experiments. After the construction of dynamic vehicle models dynamic characteristics of the maglev vehicle are introduced and the stability criteria for magnetic levitation are derived. The effect of a dead zone in the mechanical air gap controller and nonlinear characteristics of the magnets, which are expected to exert a large influence on vehicle levitation performance, are investigated by simulations. The simulation results show that a low control lever ratio causes sudden deterioration of the levitation performance if there exists a dead zone in the controller, and a suitable control lever ratio which is unaffected by the dead zone is proposed. Finally, field test results with an actual maglev transport vehicle are shown and the dynamic levitation performance of the vehicle is discussed.  相似文献   

11.
汽车主动悬架的单神经元自适应控制   总被引:2,自引:0,他引:2  
金耀  于德介  宋晓琳 《汽车工程》2006,28(10):933-936
在1/4汽车动力学模型的基础上,设计了汽车主动悬架的自适应神经元控制器。以车辆的行驶平顺性为主要控制目标,车身垂直加速度、悬架动挠度、车轮动位移为具体评价参数,研究了系统在随机路面激励条件下的时域响应,计算了振动响应的均方根值,考察了在变参数条件下控制器的鲁棒性。仿真结果表明,该控制器能有效改善车辆的综合性能,尤其是平顺性和舒适性,并且具有较好的鲁棒性,对模型参数的变化有一定的适应性。  相似文献   

12.
Rail vehicles are today increasingly equipped with active suspension systems for ride comfort purposes. In this paper, it is studied whether these often powerful systems also can be used to improve crosswind stability. A fast rail vehicle equipped with active secondary suspension for ride comfort purposes is exposed to crosswind loads during curve negotiation. For high crosswind loads, the active secondary suspension is used to reduce the impact of crosswind on the vehicle. The control input is taken from the primary vertical suspension deflection. Three different control cases are studied and compared with the only comfort-oriented active secondary suspension and a passive secondary suspension. The application of active secondary suspension resulted in significantly improved crosswind stability.  相似文献   

13.
Heavy road vehicles play an important role in the economy of many countries by providing an efficient means of transporting freight. Such vehicles can also have a significant impact on safety, the infrastructure and the environment. The design of the suspension affects the performance of the vehicle in terms of ride, infrastructure damage, suspension working space, energy consumption, rollover stability, yaw stability, braking and traction. The published literature on suspension design for heavy road vehicles is reviewed. It is found that extensive knowledge exists, but that there are areas where improved understanding is needed. Areas identified as fundamental issues requiring attention include ride discomfort criteria, secondary suspensions, and controllable suspensions. Two issues in particular are examined in detail: suspension tuning and suspension configuration. In the tuning of suspension parameter values for vibration performance, numerical optimisation techniques have been used extensively, but generic tuning strategies have not been widely developed. Modal analysis is proposed as a technique for gaining the insight into vehicle vibration behaviour necessary to enable tuning strategies to be devised. As an example, the technique is applied to the pitch-plane vibration of a tractor-semitrailer. In analyses of new suspension configurations or concepts, comparison with alternative concepts is not always made. Lack of such comparisons makes the selection of an optimum concept difficult. Analysis of alternative concepts using simple mathematical models, and comparison of their performance using common criteria, is advocated for enabling informed selection of an optimum. An example involving two alternative roll control systems is used to demonstrate the issue.  相似文献   

14.
Summary In-wheel-motors are revolutionary new electric drive systems that can be housed in vehicle wheel assemblies. Such E-wheels permit packaging flexibility by eliminating the central drive motor and the associated transmission and driveline components, including the transmission, the differential, the universal joints and the drive shaft. Apart from many advantages of such a system, unequalled independent wheel control allows vehicle dynamic improvement to assist the driver in enhancing cornering and straight-line stability on slippery roads and in adverse ground conditions. In this paper a Fuzzy logic driver-assist stability system for all-wheel-drive electric vehicles based on a yaw reference DYC is introduced. The system assists the driver with path correction, thus enhancing cornering and straight-line stability and providing enhanced safety. A feed-forward neural network is employed to generate the required yaw rate reference. The neural net maps the vehicle speed and the steering angle to give the yaw rate reference. The vehicle true speed is estimated using a multi-sensor data fusion method. Data from wheel sensors and an embedded accelerometer are fed into an estimator, where a Fuzzy logic system decides which input is more reliable. The efficiency of the proposed system is approved by conducting a computer simulation. The proposed control system is an effective and easy to implement method to enhance the stability of all-wheel-drive electric vehicles.  相似文献   

15.
ABSTRACT

A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles’ dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles – mainly automobiles – the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle’s ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.  相似文献   

16.
汽车四轮定位分析及检测   总被引:4,自引:0,他引:4  
采用完全四轮定位方法和电脑四轮定位仪可使车辆定位参数得到最佳的测量,从而使车辆保证原设计功能。阐述了定位参数对转向操纵的稳定性,转向控制及轮胎磨损的影响,另外,介绍了四轮定位的优点。  相似文献   

17.
Fundamental Issues in Suspension Design for Heavy Road Vehicles   总被引:8,自引:0,他引:8  
Heavy road vehicles play an important role in the economy of many countries by providing an efficient means of transporting freight. Such vehicles can also have a significant impact on safety, the infrastructure and the environment. The design of the suspension affects the performance of the vehicle in terms of ride, infrastructure damage, suspension working space, energy consumption, rollover stability, yaw stability, braking and traction. The published literature on suspension design for heavy road vehicles is reviewed. It is found that extensive knowledge exists, but that there are areas where improved understanding is needed. Areas identified as fundamental issues requiring attention include ride discomfort criteria, secondary suspensions, and controllable suspensions. Two issues in particular are examined in detail: suspension tuning and suspension configuration. In the tuning of suspension parameter values for vibration performance, numerical optimisation techniques have been used extensively, but generic tuning strategies have not been widely developed. Modal analysis is proposed as a technique for gaining the insight into vehicle vibration behaviour necessary to enable tuning strategies to be devised. As an example, the technique is applied to the pitch-plane vibration of a tractor-semitrailer. In analyses of new suspension configurations or concepts, comparison with alternative concepts is not always made. Lack of such comparisons makes the selection of an optimum concept difficult. Analysis of alternative concepts using simple mathematical models, and comparison of their performance using common criteria, is advocated for enabling informed selection of an optimum. An example involving two alternative roll control systems is used to demonstrate the issue.  相似文献   

18.
吴利军  刘昭度  何玮 《汽车工程》2005,27(5):514-517,521
提出了ACC车辆与前车之间的速度一位移关系以及分别以车距控制和相对车速控制为目标的2种LQR模型,并根据两车的速度一位移关系的不同实现2种模型之间的转换,以生成符合驾驶员操作行为的ACC车辆控制目标,建立了实现控制目标的车速控制模型。仿真计算表明控制策略满足乘坐舒适性和保持安全车距的要求。  相似文献   

19.
目前最常用的电动轮--轮毂电机驱动型电动轮是在电动轮内安装轮毂电机,这将增加电动车的簧下质量,从而降低悬架响应的敏感度;汽车重心发生改变,汽车转向定位参数、制动滑移率的控制参数等都会发生改变,对车辆的平顺性和乘坐舒适性带来不利的影响。针对这些问题,文章设计出驱动-转向一体化的电动轮,将轮毂电机、轮内悬架、转向电机、电机悬挂装置和轮毂集成在车轮上,有效提高电动轮汽车的性能。  相似文献   

20.
车轮外倾角与车轮前束值是车轮定位中的两个重要参数,车轮前束是为了抵消车轮外倾产生的侧滑不利影响,因此前束值要与车轮的外倾角有合理的匹配。综合考虑车辆的结构参数和轮胎特性,基于车轮的侧滑机理,推导出车轮外倾角与前束值的合理匹配关系模型,用试验结果验证了模型的正确性,为在车辆的设计开发过程中,合理的确定车轮的外倾角与前束值提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号