共查询到20条相似文献,搜索用时 0 毫秒
1.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1287-1304
For electromagnetic suspension (EMS) type urban Maglev vehicles using a U-shaped electromagnet, the levitation and guidance forces are generated by only one electromagnet. Although the levitation force is actively controlled by changing the voltage of the electromagnet, the guidance force is passively determined by the levitation force. In addition, the curve negotiation performance of EMS-type urban Maglev vehicles using a U-shaped electromagnet must be considered, because an urban guideway may have some curves with shorter radii. It is, therefore, necessary to predict the curving performance with the greatest accuracy possible, in order to improve electromagnetic suspension and establish guideway design specifications. The objective is to establish a new dynamic modelling technique, so as to achieve more realistic curving simulation and thus to more accurately evaluate the curving performance of an EMS-type Maglev vehicle. The use of a full vehicle multibody dynamic model is proposed, and is applied to the evaluation of curving performance. Design changes are also investigated to obtain the bogie design directions for minimising variation in the lateral air gap, which is a criterion for curving performance. 相似文献
2.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1271-1286
In magnetically levitated (Maglev) transportation systems, especially in electromagnetic suspension system (EMS) type Maglev systems, highly accurate prediction of ride quality is very important in order to reasonably relax guideway construction tolerances or constraints and stiffness while meeting the specification for ride comfort, thereby reducing guideway construction and maintenance costs. A full vehicle multi-body dynamic model is proposed, to facilitate a rigorous ride quality prediction of an EMS-type Maglev vehicle. Using the more realistic dynamic model proposed in this paper, the effects of guideway deflection limits, surface roughness, and levitation control system parameters on ride quality are studied numerically. The results obtained from the simulation studies are then used to facilitate a discussion of the trade-off between guideway smoothness and vehicle suspension. It can be expected that these studies could suggest cost-effective specifications for guideway construction tolerances and stiffness and EMS. 相似文献
3.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):309-324
The levitation control system in an electromagnetically levitated vehicle controls the voltage in its winding to maintain the air gap, which is the clearance between the electromagnet and the guideway, within an allowable range of variation, while strongly interacting with the flexible guideway. Thus, the vibrational characteristics of the guideway play an important role in the dynamics of Maglev (magnetically levitated) vehicles that utilise an active electromagnetic suspension system. In this study, the effects of the guideway's vibrational characteristics, such as natural frequency and damping, on the dynamics of the Maglev vehicle UTM-02 are numerically and experimentally analysed. From these analyses, the coupled equations of motion of the simplified vehicle–guideway model with three degrees of freedom are derived. Eigenvalues are calculated and frequency response analysis is also performed, in order to obtain a clear understanding of the dynamic characteristics resulting from the guideway's vibrational characteristics. To verify the numerical results, air gap tests of the urban Maglev vehicle UTM-02 are also carried out. These results lead us to recommend that the natural frequency of the guideway be decreased by increasing mass density rather than by decreasing rigidity, and that its damping ratio be increased in the Maglev vehicle UTM-02 employing a five-state feedback control law as a levitation control law. 相似文献
4.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1480-1499
This paper proposes an approach for the validation of railway vehicle models based on on-track measurements. The validation of simulation models has gained importance with the introduction of new applications of multi-body simulation in railway vehicle dynamics as the assessment of track geometry defects, the investigation of derailments and the analysis of gauging. These applications are not only interested in qualitative predictions of the vehicle behaviour but also in precise quantitative results of the safety and comfort relevant vehicle responses. The validation process aims at guaranteeing that the simulation model represents the dynamic behaviour of the real vehicle with a sufficient good precision. A misfit function is defined which quantifies the distance between the simulated and the measured vehicle response allowing to evaluate different models at different running conditions. The obtained modelling errors are compared to the measurement uncertainty estimated for one vehicle using repeatability analysis. 相似文献
5.
It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data. 相似文献
6.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):889-914
The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble. 相似文献
7.
8.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):856-876
The bodies of many railway freight cars in many countries of the world are coupled to the running gear by means of a body centre plate that makes a friction pair with a centre bowl. During motion, the bogie is rotated and moved with respect to the car body. This leads to wear on the contact surfaces. Lubrication is inexpedient in this case because the friction forces damp the vibrations (so-called bogie hunting) during motion. Usually, centre plates exhibit noticeable wear after two years of operation. Reducing wear requires knowing details of the wear process which, in turn, requires computer simulation of freight car motion for an operation period of 10–15 years. The purpose of this paper is to develop a universal method for wear simulation of friction pairs that could be used, in particular, for the centre plate of a freight car. 相似文献
9.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1553-1571
This paper presents a complete numerical model for studying the vertical dynamics of the vehicle/track interaction and its impact on the surrounding soil, with the emphasis on vehicle modelling. A decoupling between the track and the soil is proposed, due to the difficulty of considering all the subsystem components. The train/track model is based on a multibody model (for the vehicle) and a finite element model (for the track). The soil is modelled using an infinite/finite element approach. Simulations of both models are carried out in the time domain, which is better able to simulate the propagation of the vibration waves and to take into account the possible nonlinearity of a component. The methodology is applied in the case of an urban tram track and validated with the available experimental data. Models for the tram, the track and the soil are described. Results from the complete model of the vehicle and a simple model, based on an axle load, are compared with experimental results and the benefits of a complete model in the simulation of the ground vibration propagation induced by railway vehicles are demonstrated. Moreover, a parametric study of the vehicle wheel type is conducted, which shows the advantage of a resilient wheel, for various rail defects. 相似文献
10.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):975-990
The vibration characteristics of the door panels are affected by the weatherstrip seals used in between the doors and vehicle body along the perimeter of the doors. The weatherstrip seals exhibit nonlinear and viscoelastic material properties that vary with frequency, temperature, strain rate and amplitude, and previous load history. The material properties of the seal must be investigated carefully in order to predict the vibration characteristics of the automobiles under different loading conditions. In this study, we developed hyperelastic and viscoelastic models of the weatherstrip seal to predict dynamic performance of a vehicle door and its effect on the overall vehicle dynamics. For this purpose, first, static compression and stress relaxation experiments were performed on the seal using a robotic indenter equipped with force and displacement sensors and then a finite element model utilising the results of these experiments was developed in ANSYS. Finally, a representative model of the seal was integrated into the finite element model of the vehicle door to investigate its effect on the vehicle vibrations. The model predictions were validated using experimental modal analysis performed on the vehicle door with and without the seal. It was observed that the seal has a significant effect on the vehicle dynamics. 相似文献
11.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):1643-1665
ABSTRACTMost modern day automotive chassis control systems employ a feedback control structure. Therefore, real-time estimates of the vehicle dynamic states and tire-road contact parameters are invaluable for enhancing the performance of vehicle control systems, such as anti-lock brake system (ABS) and electronic stability program (ESP). Today's production vehicles are equipped with onboard sensors (e.g. a 3-axis accelerometer, 3-axis gyroscope, steering wheel angle sensor, and wheel speed sensors), which when used in conjunction with certain model-based or kinematics-based observers can be used to identify relevant tire and vehicle states for optimal control of comfort, stability and handling. Vehicle state estimation is becoming ever more relevant with the increased sophistication of chassis control systems. This paper presents a comprehensive overview of the state-of-the-art in the field of vehicle and tire state estimation. It is expected to serve as a resource for researchers interested in developing vehicle state estimation algorithms for usage in advanced vehicle control and safety systems. 相似文献
12.
Xiangkun He Yulong Liu Chen Lv 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(8):1163-1187
ABSTRACTCollision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions. 相似文献
13.
Zeyu Ma James Yang 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(2):137-167
A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability. 相似文献
14.
15.
Andreas Zwölfer 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(6):815-840
In recent studies, the dynamic response of a passenger car to a gyrostat was investigated for a series of driving manoeuvres, but the gyrostat was assumed to be rigidly supported, thus neglecting the effect of rotor precession. The aim of the present study is the modelling and investigation of the gyrostat-vehicle interaction for elastically mounted gyrostats. For this purpose, a general model describing the motion of a gyrostat elastically supported by a moving platform is derived. Emphasis is placed on the mathematical derivation, where all considerations that are necessary to arrive at the final result are included. Thus, the presented considerations and results can be easily adopted and are suitable to serve beyond their actual purpose as a reference work for other applications. The derived model is tested with the aid of vehicle dynamics simulations and the simulation results prove to be consistent with the results of the rigid attachment model, provided that the elastic approach is subjected to high-bearing stiffnesses. However, it is shown that at lower bearing stiffnesses the solutions are progressively different, since low-bearing stiffnesses enable the gyrostat to move, due to the compliance of the bearings itself, relative to the vehicle chassis with high-angular velocities. 相似文献
16.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):619-639
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models. 相似文献
17.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1695-1715
Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour. 相似文献
18.
电动汽车驱动系统再生制动特性分析与仿真 总被引:2,自引:0,他引:2
电动汽车行驶时对能量的需求以及延长续驶里程要求驱动电机具有再生制动能力,既可以提供制动力,又可以将制动过程中的能量回收。通过对汽车制动模式及其产生的能量进行分析。以永磁无刷直流电机系统在作电动汽车动力时实现电气制动为控制策略,仿真了回馈制动,并对仿真结果进行了分析、探讨。结果表明,再生制动的算法是可行的,能满足能量回收要求。 相似文献
19.
Jan Loof Igo Besselink Henk Nijmeijer 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(1):86-107
This paper describes the coupling between a three degrees of freedom steering-system model and a multi-body truck model. The steering-system model includes the king-pin geometry to provide the correct feedback torque from the road to the steering-system. The steering-system model is combined with a validated tractor semi-trailer model. An instrumented tractor semi-trailer has been tested on a proving ground and the steering-wheel torque, pitman-arm angle, king-pin angles and drag-link force have been measured during steady-state cornering, a step steer input and a sinusoidal steering input. It is shown that the steering-system model is able to accurately predict the steering-wheel torque for all tests and the vehicle model is accurate for vehicle motions up to a frequency where the lateral acceleration gain is minimum. Even though the vehicle response is not accurate above this frequency, the steering-wheel torque is still represented accurately. 相似文献
20.
Development of a generalised equivalent estimation approach for multi-axle vehicle handling dynamics
Jinquan Ding Konghui Guo 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(1):20-57
This paper devotes analytical effort in developing the 2M equivalent approach to analyse both the effect of vehicle body roll and n-axle handling on vehicle dynamics. The 1M equivalent vehicle 2DOF equation including an equivalent roll effect was derived from the conventional two-axle 3DOF vehicle model. And the 1M equivalent dynamics concepts were calculated to evaluate the steady-state steering, frequency characteristics, and root locus of the two-axle vehicle with only the effect of body roll. This 1M equivalent approach is extended to a three-axle 3DOF model to derive similar 1M equivalent mathematical identities including an equivalent roll effect. The 1M equivalent wheelbases and stability factor with the effect of the third axle or body roll, and 2M equivalent wheelbase and stability factor including both the effect of body roll and the third-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the three-axle vehicle. By using the recursive method, the generalised 1M equivalent wheelbase and stability factor with the effect of n-axle handling and 2M equivalent generalised wheelbase and stability factor including both the effect of body roll and n-axle handling were derived to evaluate the steady-state steering, frequency characteristics, and root locus of the n-axle vehicle. The 2M equivalent approach and developed generalised mathematical handling concepts were validated to be useful and could serve as an important tool for estimating both the effect of vehicle body roll and n-axle handling on multi-axle vehicle dynamics. 相似文献