首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
黄埔大桥承台大体积混凝土研究与应用   总被引:1,自引:1,他引:0  
郑双  谭立心 《公路》2007,(6):215-217
经对黄埔大桥承台大体积混凝土配合比进行优化设计后,配制出大掺量矿物掺合料混凝土,工作性能优良、绝热温升低、抗裂性能好;对大体积混凝土内部温度场进行计算机仿真和最大温度主应力值计算,从理论上证明了黄埔大桥承台大体积混凝土的安全性。  相似文献   

2.
混凝土升温过程中,内部温度高于表面温度,表面产生温差拉应力,可能出现表面裂缝,反之,降温过程内部出现裂缝。通过对大体积混凝土的温度和应变监测,调控养护蒸汽温度,有效控制大体积混凝土内外温差,减小温度应力,从而达到减少裂缝的目的。  相似文献   

3.
通过对大体积混凝土配合比设计及温差控制技术的研究与实践,认为大体积混凝土的性能应由绝热温升、强度、工作性、耐久性四项指标综合衡量;在温差控制中,应充分利用补偿收缩混凝土的温度补偿效应,并准确计算相关参数基本与实际相近;在实际施工中提出混凝土浇筑放热后注意开裂危险期,并严格监控温差变化。  相似文献   

4.
程建龙  张华武 《公路》2023,(12):202-205
以实际工程海中大体积混凝土承台为研究对象,介绍大体积混凝土生产、施工、养护过程中所采用的温控措施及控制标准,同时通过对施工全过程实时温度监测,分析混凝土内部温度场变化情况,为海中大体积混凝土结构早期温度控制和耐久性提升提供参考。  相似文献   

5.
为研究养护温度对环氧树脂混凝土强度性能的影响,通过测试不同养护温度下环氧树脂混凝土的硬化时间、抗压强度,以及应力-应变曲线,分析低温(5℃)、常温(20℃)、高温(35℃)3种养护条件对材料硬化时间、抗压强度树脂、应力-应变发展规律的影响,并对应力-应变本构关系进行双线性拟合分析。结果表明,随着养护温度升高,环氧树脂混凝土的硬化时间逐渐减小,且材料强度提升。相较于20℃的养护条件,5℃养护的环氧树脂混凝土材料强度降低8.4%,35℃养护的环氧树脂混凝土材料强度提高10.5%;温度升高使得应力-应变曲线上升段应力发展较快,而下降段应力也下降迅速。  相似文献   

6.
重点探讨混凝土在冬季建筑温度条件下,其强度与温度、龄期等因素之间的相互关系。通过对自然环境条件、龄期设定以及抗压性能指标的评估和检验。在低温条件下,设计不同养护方式和养护时间,重点模拟冬季低温自然养护等不利养护条件,尽可能真实的反映出工程现场实际养护情况,通过对自然环境温度和同种养护条件下混凝土试件内部温度的观测,对其进行室内不同养护方式和龄期的抗压强度试验,得到周期内的混凝土抗压强度值。在确定的低温条件下,得出养护龄期对混凝土抗压强度的影响以及试件内外部温度的变化规律。  相似文献   

7.
结合具体工程项目,在进行大体积混凝土施工前期,对大体积水泥混凝土建立有效的仿真模型,同时对仿真模型的混凝土浇筑过程的温度场和应力场进行有限元剖分计算,分析其发展方向,在施工过程中结合现场实际情况,采取了适当的温度控制方案,适当地调整混凝土成品温度保护措施,使承台大体积混凝土在现场施工及成品养护时期内部的温度场和应力场按照预期分析的方向发展,取得了预防及控制温度裂缝的成功经验,对类似工程具有一定的借鉴作用。  相似文献   

8.
马鞍山大桥主塔塔座混凝土强度等级高、胶材用量大、绝热温升高、温度裂缝控制困难.针对大桥主塔塔座的施工特点,在仿真计算的基础上,采用优化混凝土配合比、隐式榫头结构设计,布设冷却水管、加强养护等温度控制措施,并进行现场温度监控.经现场检查,大体积混凝土未出现有害温度裂缝,达到了预期的控裂效果.  相似文献   

9.
王保华 《交通科技》2009,(Z1):18-20
阐述了大体积混凝土承台温度应力的基本作用原理以及温度应力在承台内部的分布情况,通过实例计算大体积混凝土在浇筑各阶段的温度变化和应力变化,分析施工阶段控制大体积混凝土承台裂缝应该注意的细节。  相似文献   

10.
为了降低潍日高速公路桥跨越胶济客运专线和胶济铁路转体桥大体积混凝土温升,并保证张拉期强度,拟采用大掺量矿渣粉降低水化热,并保证强度及其它性能指标。经室内试验验证:矿渣粉用于大体积预应力高强混凝土中,水化热显著降低,掺入矿渣粉30%~50%可以降低水化温升9. 6%~20. 6%,推迟快速升温阶段的出现,有利于减少或避免温差裂缝;标准养护条件下,混凝土强度不随矿渣粉掺量线性变化,28d强度,矿渣粉掺入30%比不掺入提高了17%,掺入50%比不掺入提高了6. 2%;混凝土28d抗氯离子系数随矿渣粉掺量增加而降低,掺入30%时,比不掺入降低了52%,掺入50%时,比不掺入降低了62%;矿渣粉的掺入对混凝土收缩影响不大。  相似文献   

11.
温度控制是大体积混凝土施工质量控制的重要环节,施工工艺参数是控制大体积混凝土温度裂缝的主要技术措施之一。该文通过采用Midas软件建立有限元模型分析浇筑方式、冷却管间距、浇筑温度和保温开始时间等施工参数对大体积混凝土温度的影响,结合具体工程所处环境情况,提出了控制大体积混凝土温度裂缝的技术措施。优化水泥混凝土材料组成,采用40%粉煤灰等量取代水泥,可以降低材料绝热温升9.08℃左右;混凝土浇筑采用分层间歇5d或分层连续间隔4h,冷却管水平和竖直间距为1.5m;浇筑温度越高,内部温升峰值明显增加,应通过在拌和水中掺加冰屑、石料提前浇水预冷等技术措施尽量降低混凝土浇筑温度;为减小里表温差和温降速率,浇筑48h后用保温篷布进行保温,同时应根据实时监测温度数据及时调整保温措施。  相似文献   

12.
21世纪90年代后,随着桥梁技术的突飞猛进,大体积混凝土在桥梁结构中应用的越来越多且体积逐渐增大,由几百立方米到几万立方米。因此,对于大体积混凝土施工提出了更高的要求。现代桥梁中时常涉及到的大体积混凝土施工,它主要的特点是体积大,一般实体最小尺寸≥1m。由于其体积大,表面小,水泥水化热释放比较集中,内部温升比较快,当混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用,所以必须从根本上分析它,来保证施工的质量。  相似文献   

13.
《公路》2017,(6)
依托某大桥承台的大体积混凝土在10℃和20℃施工温度工况,对混凝土的内外温度及温差进行了计算,基于计算结果,给出了总体温控施工方案。结果表明:在10℃和20℃施工温度下,大体积混凝土施工内外温差均不大于25℃,采用合理厚度的泡沫板保温措施进行承台混凝土养护即可满足混凝土温控要求;建议采用安装冷却水管、埋设测温监控、控制混凝土浇筑和养护质量等方法来进行大体积混凝土的养护及温度控制。  相似文献   

14.
蒋赣猷  李莘哲  韦苡松 《公路》2023,(2):147-151
以龙门大桥锚碇顶板8 m厚大体积混凝土一次浇筑为例,在有限元仿真计算的基础上,采取水化温升低、抗裂性能高的大体积混凝土配置技术、使用碘钨灯对后浇带进行加热保温、合理使用冷却水管以及使用温缩诱导纤维等温控措施,并进行现场温度监控。实测顶板混凝土内部温度与仿真计算结果基本一致,各项温控数据均满足温控标准的要求,经现场跟踪观察,未发现明显可见温度裂缝,温控效果良好。  相似文献   

15.
张建初  王艳华 《公路》2007,(10):71-74
介绍混凝土温度裂缝产生的机理,并探讨了大体积混凝土结构早期温度裂缝的影响因素。通过工程实例,对不同混凝土试样在温升量测试验(TRET)中温度和变形方面的试验结果进行比较和分析,提出了预制大体积混凝土沉箱早期温度裂缝的控制措施。  相似文献   

16.
针对实际工程项目,采用三维有限元软件MIDAS/Civil模拟分析桥梁承台大体积混凝土浇筑施工过程中温度及拉应力变化情况,据此制定合理可行的内部冷却管布置方案,设计并采用大体积混凝土智能控制系统实现大体积混凝土养护过程智能化。  相似文献   

17.
西堠门大桥南锚碇为重力式嵌岩结构,混凝土方量大,为典型的超大体积混凝土块体。通过精选混凝土配料,优化混凝土配合比;视气温情况调整混凝土入仓温度,控制混凝土温度峰值;合理埋设冷却水管,结合监测控制冷却水进水温度和流量;重视保温、养护等措施,降低水化热,减小混凝土的绝热温升,确保混凝土质量。  相似文献   

18.
结合工程实例,运用桥梁专业结构分析软件MIDAS,对广东某斜拉桥承台大体积混凝土的水化热温升效应进行了仿真计算,并与现场实测混凝土温度进行对比,研究承台大体积混凝土浇注时温升变化规律。为桥用大体积混凝土温控设计、制订合理的温控防裂措施提供理论依据。  相似文献   

19.
为研究冷却水对大体积混凝土温度场的影响和发展变化,文章以金安金沙江大桥大体积混凝承台浇筑工程为例,对其施工和养护期间水化热温度进行连续监测。根据实测水化热温度进行冷却水流速和流量控制,提出采用变速控制水冷管流速的方法。利用瞬态温度场三维有限元理论方法,应用有限元计算软件建立模型,进行水冷管参数对比分析。分析结果表明:冷却水对混凝土降温有显著效果,在水泥用量不变的情况下,合理调整水冷管流速等因素能有效控制水化热温升变化,防止有害裂缝的产生。  相似文献   

20.
随着我国经济快速发展,高速公路设计荷载发生了变化,结构选型上出现了大量的混凝土工程,尤其是大体积混凝土结构,但由于受温度等客观因素的影响,混凝土结构内部经常出现温度裂缝,严重影响了工程质量。该文从混凝土早期温度裂缝的成因、约束条件的改善以及新型外加剂使用提出了自己的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号