首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
马鞍山长江公路大桥左汊主桥为(360+2×1080+360) m的三塔两跨悬索桥,中塔采用钢-混叠合、塔梁固结门式结构,下塔柱为预应力钢筋混凝土结构,上塔柱为钢结构,钢塔共分21个节段,首节采用浮吊安装,标准节段长6 m ,最大起吊重达235 t ,采用塔吊进行安装。为确保钢塔线形满足要求,对影响钢塔安装精度因素进行分析,形成以控制钢塔制造质量为核心、钢塔首节段安装精度为基础的线形控制流程,对钢塔节段进行工厂制造控制和现场安装控制。工厂制造控制包括零部件加工、块体制作、节段组拼、端面机加工、预拼装;现场安装控制包括首节段安装、标准节段安装、横梁与钢塔的连接。实践表明,该桥采用以控制钢塔制造精度为核心的钢塔线形控制技术进行钢塔架设施工,施工过程中钢塔制造精度和安装精度满足要求,实现了钢塔线形控制的目的。  相似文献   

2.
日前,记者从安徽省高速公路控股集团公司了解到,马鞍山长江公路大桥中塔钢塔成功安装。停泊在长江主航道上的千吨级浮吊,经过近4h的吊装,终于将重达729t的大桥首节钢塔缓缓吊起,稳稳地安放在钢塔横梁支撑上,标志着马鞍山长江公路大桥建设已全面进入钢塔安装阶段。  相似文献   

3.
南京长江第三大桥钢塔制造精度管理   总被引:2,自引:0,他引:2  
沈斌 《桥梁建设》2007,(4):59-61,64
南京长江第三大桥索塔为人字曲线形钢塔,高215m。钢塔制造中进行了严格的精度管理,获得了较高的制造和安装精度。简要介绍该桥钢塔制造的精度管理方法与技术。  相似文献   

4.
以在建的横向拱形钢塔斜拉桥为工程背景,运用大型有限元软件MIDAS/CIVIL对该桥进行全桥计算。主要分析探讨竖吊杆的四种张拉方案对横向拱形钢塔的变形及受力的影响,同时总结出比较合理的张拉方案,并计算分析该方案下各施工阶段、成桥及运营阶段横向拱形钢塔的变形和受力情况,得出若干结论。  相似文献   

5.
之江大桥拱形钢塔节段连接采用内侧栓接、外侧壁板焊接方式,钢塔节段焊接施工是钢塔施工的重心,节段焊接质量直接影响着钢塔的整体受力.主要介绍钢塔的焊接施工工艺、钢塔焊接前节段的定位控制、焊接残余应力的控制以及合龙段安装定位、超大焊缝焊接质量控制.  相似文献   

6.
针对大型斜拉桥及悬索桥钢塔节段体积大、构件厚度大、制造要求精度高、加工过程易变形、结构尺寸难控制等特点,以之江大桥超大拱钢塔节段制造为例,介绍了拱形钢塔节段制造的施工工艺,通过实现构件板单元化、加强焊接变形控制、合理布置钢塔节段加工支撑点、提高施工管理等质量控制措施,有效地保证了拱形钢塔节段的制造质量.通过工程实例验证,该工艺切实可行,拱形钢塔节段制造质量满足设计及规范要求.  相似文献   

7.
自21世纪初以来,我国已建成多座大型钢塔桥梁,其制作工艺及相关设备的研发及应用已日趋成熟。随着社会经济的发展,因钢塔具有景观效果良好、现场施工干扰小、工厂化制作等优点,在城市中小跨径桥梁建设中也得到了大量应用。以武汉光谷高新大道桥施工为背景,介绍该项目钢塔结构形式和结构特点,分析钢塔的制作难点,针对外壁板制作、钢塔节段制作、钢塔与横梁段固结、节段整体预拼装等关键技术进行了分析研究,解决了钢塔线形、节段匹配等精度控制难题,有效保证了钢塔的制造和安装质量。  相似文献   

8.
针对大榭第二大桥钢塔节段的结构特点,从制作工艺、焊接变形控制等方面介绍了控制钢塔精度的方法,为今后钢塔节段制造提供技术参考.  相似文献   

9.
以目前世界上最大跨度的某钢桁梁斜拉桥空间钻石形桥塔为依托,对目前世界上首台万吨米级W12000-450型塔吊的附墙设计及附墙与钢塔的耦合作用进行系统研究。基于桥塔的施工工艺及现场结构布置,确定了塔吊的位置及附墙布置。通过建立桥塔与塔吊的施工阶段有限元模型,确定出塔吊附墙对钢塔的最不利荷载。在此基础上,利用钢塔T5节段局部分析有限元模型,对塔吊附墙与钢塔耦合效应进行分析。基于附墙对钢塔的作用效果分析,提出了钢塔T5节段的局部加固方案,对其加固效果进行了分析。研究表明:在最不利塔吊附墙荷载作用下,钢塔T5节段局部最大Mises应力为335 MPa,大于其材料容许应力312 MPa,需要对其进行局部加固。加固后,钢塔T5节段局部最大Mises应力降低至185 MPa,局部应力和变形均满足要求。  相似文献   

10.
《公路》2015,(3)
对斜拉桥的钢塔制作技术进行了探讨,简要阐述了斜拉索桥梁钢塔在制作中遇到的各种制作难点,通过一系列制作工艺技术的研究,提出了许多解决难题的思路和行之有效的工艺手段,通过有效的过程控制,用冷作加工取代了桥塔钢箱整体加工的施工方法,圆满完成了该桥梁钢塔部分的制造,达到了设计精度要求,对同类型的桥梁钢塔制造技术有一定的参考及借鉴作用。  相似文献   

11.
在钢塔安装完成后对钢塔环焊缝的修补以及统一的面漆涂装施工中,采用了一种使用卷扬机作为动力且可以随着塔的轴线变化而移动的平台,在作业时,平台始终水平,解决了涂装的作业空间问题.此拱形钢塔平台,可用于拱形钢塔的修饰、涂装等作业,详述其设计、作业及安全措施等,可供类似工程借鉴.  相似文献   

12.
竖转施工方法可降低索塔结构高空拼装难度,便于结构尺寸精度控制,提高焊接质量和工效,被广泛应用于斜拉桥施工。为分析独塔斜拉桥钢塔竖转施工过程中的受力状态,运用ANSYS软件模拟独塔斜拉桥竖转施工过程,计算钢塔在不同阶段的应力、变形和稳定性。结果表明,转体启动阶段和结束阶段钢塔受力状态最不利,应重点监测。在启动阶段,钢塔的变形较大,应作为主要控制监测指标。  相似文献   

13.
《中外公路》2007,27(3):54-54
在2007年6月4日至7日于美国匹兹堡举行的第24届国际桥梁技术大会上,南京长江第三大桥获林德萨尔奖章。 南京长江第三大桥是经国务院批准建设的国家“十五”重点工程,于2003年8月开工建设,2005年10月7日建成通车,为主跨648m的特大跨径钢塔钢箱梁斜拉桥,在已建成通车的同类斜拉桥中居中国第一、世界第三,其弧线形钢塔在世界上是首次采用。深水基础设计施工技术、钢塔设计施工技术等关键技术的研究和应用,为南京三桥优质、高效、安全的建成发挥了至关重要的作用,使大桥建设工期提前了22个月,节约概算投资1.76亿元,直接经济效益约5.47亿元,社会效益巨大。  相似文献   

14.
太原市摄乐大桥主桥为(30+2×150+30)m的空间交叉索面异型独塔斜拉桥,人字形桥塔高113.8m,下塔柱为钢筋混凝土结构,中、上塔柱为钢结构。该桥钢塔采用D5200-240塔吊吊装施工,塔吊设置独立的钻孔桩承台基础和1道扶墙,在钢塔两肢间设置3道横向临时对撑。在吊装钢塔时,将塔吊扶墙与第2道塔肢临时对撑设计成整体桁架结构,整体桁架结构主要由桁架基座、框架体、塔吊扶墙杆、连接销、起顶系统五大部分组成。采用MIDAS Civil 2015结构分析软件分别建立框架体和钢塔节段板单元模型,对框架体和塔吊扶墙杆结构受力、钢塔与桁架接触面受力进行计算分析。结果表明,各部位受力均满足规范要求。  相似文献   

15.
周友国  唐亮  韩大章  王岁利 《公路》2021,(1):201-204
钢结构具有自重轻、材质均匀、质量稳定、易于工厂化制造、装配化施工、便于回收利用等优点,为世界桥梁界所推崇。为推进钢结构桥梁建设,交通运输部于2016年发布了《关于推进公路钢结构桥梁建设的指导意见》。基于上述原因加之缆索承重桥梁的大量建设,钢塔因其独特的优势必将获得更为广泛的应用。在我国已经建成南京长江三桥、泰州长江大桥、马鞍山长江公路大桥钢塔研究的基础上对端面机加工钢塔的制造及安装几何控制进行了深入研究,并且将研究成果应用于新建的浦仪公路西段跨江大桥钢塔中,在控制过程中采用了前后场联动的精度管理体系,最终达到了超过1/33 000的轴线控制精度,而且优良的精度控制使得2座钢塔一共10个预设的调整段被取消,从而大幅提高了工程进度。  相似文献   

16.
《城市道桥与防洪》2005,(6):172-172
世界上第一座“人”字弧线形钢塔斜拉桥——南京长江第三大桥,于2005年10月7日正式建成通车。  相似文献   

17.
结合杭州之江大桥的施工监控,就拱形钢塔斜拉桥的钢塔、钢箱梁线形控制的内容、要点进行了探讨,并提出了相应的控制措施.之江大桥主桥成桥线形误差在设计的误差允许范围之内,可供其他工程借鉴.  相似文献   

18.
珠机城际铁路金海特大桥主桥为主跨3×340m公铁同层四塔斜拉桥,主梁以上部分桥塔纵、横向均为倒Y形的空间四柱式钢塔,采用"工厂整体制造,船运至墩位,现场浮吊整体吊装就位"的总体方案施工.钢塔施工中,利用"大桥海鸥号"3600 t浮吊与1200 t浮吊配合,在浮吊扒杆下的有限空间内,实现了钢塔(平卧状态下长103.4 m...  相似文献   

19.
某景观斜拉桥为编花索面弧形钢塔斜拉桥,通过与常规斜拉桥进行对比分析,对编花索面弧形钢塔斜拉桥设计要点进行论述,介绍了方案设计创意过程、合理成桥索力的判定、斜拉索上下锚点的设计等问题。  相似文献   

20.
鹅公岩轨道大桥为主跨600m的自锚式悬索桥,由于建设条件受限,该桥在悬索桥桥塔上固结钢塔,采用"先斜拉、后悬索"的方案施工。过渡斜拉桥是该自锚式悬索桥钢箱加劲梁施工的关键结构。根据悬索桥的结构布置、钢箱梁刚度特性和对不同固结钢塔高度的比较,确定了斜拉索的布置形式、最佳钢塔高度和相应的斜拉索规格选型。通过对过渡斜拉桥成桥过程和斜拉桥-悬索桥体系转换过程进行仿真分析,确定斜拉索及其锚固结构由过渡斜拉桥成桥过程最大索力控制设计,固结钢塔由斜拉桥-悬索桥体系转换过程控制设计,并以此为依据对过渡斜拉体系主要构件进行设计。斜拉索采用1 670MPa7mm预制平行钢丝索;钢塔高42.5m,采用双肢结构,每肢均为5.6m×3.0m矩形钢箱。实践表明:过渡斜拉体系设计合理,顺利地辅助完成了钢箱梁的架设及斜拉桥-悬索桥体系的转换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号