首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
通过采用三维瞬态DDES数值方法模拟强横风下,在路堤上运行的高速列车周围流场,对比3,6,9和12 m 4种路堤高度对高速列车瞬态气动性能的影响.研究结果表明:强横风下,随着路堤高度的增加,列车两侧压力差增大,并影响列车周围流速分布,使得流场情况更为复杂.瞬态流场结构显示,在路堤高度增加之后,车体背风侧的涡结构逐渐由体...  相似文献   

2.
文章采用计算流体力学方法,针对高架桥高度变化对列车气动特性的影响进行了研究。结果表明,随着高架桥高度的增加,头车的倾覆力矩系数略微增大,而中间车的倾覆力矩系数逐渐减小,尾车的倾覆力矩系数基本不变。高架桥高度达到15m后,列车的气动六分力基本不随高架桥高度的增加而变化。  相似文献   

3.
建立了横风环境中高速列车运行于复线路堤上的三维空气动力学模型,开展了路堤高度和列车在复线路堤上的位置对高速列车气动性能影响的数值计算与对比分析。结果表明,路堤上列车周围的气流流速大于平地上的气流流速,导致路堤上列车气动性能较平地上恶劣;路堤高度和横风速度对高速列车在下风线上和上风线上气动性能的差异有重要影响;列车在下风线上运行比在上风线上运行更容易发生倾覆。  相似文献   

4.
高架桥结构在高速铁路建设中被大量采用.开展行驶在高架桥上的高速列车空气动力特性研究,对保证列车运行的安全、舒适、环保具有重要意义.采用计算流体力学方法,对双线高架桥因高度变化影响列车的气动特性进行数值研究,通过合理划分网格、选取合适的湍流模型、设置正确的边界条件提高数值计算精度.  相似文献   

5.
为揭示横风下车体运动对高速列车气动性能的影响规律,通过数值模拟对典型车体运动形态下的横风气动性能开展研究。首先基于实车试验确定了横风下的车体典型运动形态并定义研究工况,然后通过改进的延迟分离涡模拟(IDDES)方法详细分析不同工况下的车体与转向架的气动载荷,以及列车周围的流场结构与表面压力变化情况。研究结果表明:横风下高速列车车体运动主要表现为侧滚与横移,车体的侧滚运动对列车升力的影响最明显,头、中、尾车升力均随着车体从迎风侧向背风侧运动而增大,并且车体向背风侧运动时,头车升力增大的幅度大于车体向迎风侧运动相同角度时减小的幅度;当车体运动时,第1转向架横向力、升力与倾覆力矩均增大;车体运动对列车头部、背风侧以及尾部的流动均有较明显的影响,车体向背风侧运动时,头车鼻尖区域流速降低,尾车鼻尖位置的高速流区扩大,并且由头部位置分离在背风侧形成的旋涡结构与车体的夹角呈增大趋势,旋涡流速减小;车体向迎风侧运动时,头车鼻尖区域流速增大,尾车鼻尖位置的高速流区缩小,并且从头部位置分离在背风侧形成的旋涡结构与车体的夹角呈减小趋势,而旋涡流速增大。  相似文献   

6.
为探明空气动力作用下,高速列车外风挡与车体外表面安装间距对风挡气动特性的影响规律,采用三维、定常、不可压缩雷诺时均R-S方程和RNG k-ε双方程湍流模型数值算法,对0,10,20和30 mm不同安装间距的三车编组半包式外风挡高速动车组进行数值模拟,列车明线运行速度等级为350 km/h。研究结果表明:安装间距对于风挡受侧向力影响较大,尤其是橡胶弧顶与来流相对的外风挡所受侧向力与安装间距成二次函数关系,安装间距30 mm的外风挡受侧向力最大为785N;安装间距对外风挡所受阻力、升力的影响较小,橡胶弧顶相对的两块外风挡阻力方向相反,外风挡气动升力均为负升力且最大为62N;安装间距导致外风挡表面压力分布呈现规律性变化,将外风挡表面气动压力映射到有限元计算模型上,分析不同安装间距下气动载荷作用对外风挡结构变形与应力的影响。本文研究结果可对外风挡结构强度与优化设计,以及安装位置精度要求提供指导。  相似文献   

7.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

8.
基于Realizable k-ε方程的DES数值模拟方法,研究某高速列车头、中和尾车不同区域对整车气动阻力系数的贡献值,并结合风洞试验结果,验证本文所采用的计算方法,计算与风洞试验结果两者偏差在2%以内;各车辆的瞬态气动阻力系数时程曲线在均方根值上下波动,其中头车的脉动幅度最小,尾车最大;头车、尾车的头部曲面区域及各个车辆转向架区域的气动阻力占整车气动阻力的77.8%;前端转向架区域气动阻力系数从头车、到中间车、到尾车大幅度减少,后端转向架区域气动阻力系数逐渐增加;从流场结构来看,列车的头部、风挡、车底结构以及车尾处产生了大量的漩涡;沿车长方向,头车车体附近的漩涡情况好于中车和尾车。  相似文献   

9.
高速列车气动阻力分布特性研究   总被引:2,自引:0,他引:2  
针对由8辆车组成的CRH3型动车组的实际外形,生成约1.6亿个计算网格,采用大规模并行计算,模拟单列高速列车在明线轨道上以350km/h速度运行时的气流流场,并对列车各组成部分的气动阻力特性进行统计和归类,给出各部件气动阻力对列车总气动阻力的贡献,为高速列车局部减阻优化设计提供参考。  相似文献   

10.
采用三维定常、不可压N-S方程和k-ε双方程湍流模型,利用有限体积法对不同路况下运行的列车进行数值模拟计算,分析车速、风速及路堤高度对机车气动性能的影响。研究结果表明:路堤高度的升高、车速的变大、横风风速的增大、横风风向角的变大都会使得高速机车的气动力变大,但由于本文中车速相差不大,因此,车速的变化对高速机车气动力的影响相对其余几种因素较小。  相似文献   

11.
高速列车风对附近人体的气动作用影响   总被引:3,自引:0,他引:3  
采用计算流体力学的数值方法和移动网格模拟计算方法,研究3种车头形状、从200 km.h-1到350 km.h-1的4种车速、从1.0 m到3.5 m的5种人车距离条件下列车风对人体气动作用力和人体附近列车风速度大小的影响,提出列车风对人体最大水平作用力计算关系式和人体附近最大列车风速计算关系式、以及高速列车附近人体安全距离的建议值。计算结果表明:列车风对附近人体产生的作用力因车头(尾)形状不同而差别很大,车头形状越钝,列车风对附近人体产生的作用力越大,完全钝型与充分流线型车头相比,在车速350km.h-1、人车距离1 m时列车风产生的作用力可相差7倍以上;不同车头形状产生的列车风对附近人体的作用力,其差别随人车距离的增大而减小,大致呈二次方函数规律变化;不同条件下车头(尾)通过时列车风对附近人体的水平作用力方向的变化趋势基本相同,作用力方向角变化约300°。  相似文献   

12.
自然风对高速磁浮列车气动特性的影响   总被引:3,自引:0,他引:3  
基于可压缩黏性流体的N—S方程和k—ε两方程湍流模型,采用有限容积法对磁浮列车受自然风作用下的气动力特性进行计算分析,结果表明:自然风导致列车表面的压力分布发生变化,除了列车头、尾部压力峰值点发生偏移外,列车迎风侧面的压力随着自然风速的增加而增大,随着自然风与列车之间夹角的增大呈现先增大后减小的变化规律;列车受到气动升力、侧向力以及侧滚力矩、俯仰力矩和偏转力矩的作用也随着自然风与列车之间夹角的增大呈先增大后减小的变化规律,且在自然风向与列车运行方向垂直时达到最大,此时列车受到的气动力及力矩作用均随自然风速的增大而单调增加。  相似文献   

13.
列车气动性能评估参数研究   总被引:9,自引:1,他引:8  
列车外形对列车气动性能起决定性作用。以往常采用长度法定义的长细比(长度长细比)来评估不同头部外形气动性能,这种方法在车身横截面积相同的情况下,致使长度相同外形不同的流线型车头具有相同的长细比而无法进行比较。针对这一情况,对不同外形系列的流线型列车开展了风洞实验研究,在此基础上提出了一组新的列车气动性能评估参数-整体长细比和宽细比。整体长细比考虑了车头流线型部分水平面投影形状(水平长细比)和纵向对称面投影形状(纵向长细比)对空气阻力的影响,宽细比则综合了长度长细比和车头流线型部分水平面投影形状对列车交会压力波的影响。研究结果表明该组评估参数能较好地反映出端车流线型外形对列车气动阻力和交会空气压力波幅值的影响。  相似文献   

14.
为了改善风阻制动板制动效果,基于高速列车空气动力学建立四节编组高速列车数值仿真模型。采用FLUENT软件,通过三维、定常、可压缩Navier-Stokes方程以及k-ε两方程湍流模型,开展对风阻制动板制动力的研究。结果表明:风阻制动板在高速列车紧急制动时可以提供较大制动力。首排风阻制动板提供的制动力最大。首排制动板位于头车流线型车身尾端制动效果最佳。随着首排制动板位置的推后,制动力先减小,紧接着保持不变,然后缓慢降低,最后趋于稳定;同时头车的阻力以及列车的总阻力会持续降低,最后趋于稳定。首排制动板的最佳位置是头车流线型车身尾端。  相似文献   

15.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

16.
高速磁悬浮列车纵向及垂向气动力数值分析   总被引:12,自引:4,他引:8  
采用数值分析的方法研究高速磁悬浮列车在纵向风作用下所受气动力和力矩。利用三维粘性定常不可压缩Navier Stokes方程,k~ε两方程紊流模型,采用有限体积法计算高速磁悬浮列车在不同运行速度条件下20个工况点的气动阻力,升力和俯仰力矩;分析了车下空气隙尺寸对上述气动力的影响,并与轮轨型列车的气动力特征作了比较。计算结果表明,车下空气隙的大小对列车运行的空气阻力只有微小的影响,但对气动升力的影响较大;随着车速的提高,气动阻力、升力和俯仰力矩均有较大幅度提高,不同的计算模型其提高幅度是不一样的。  相似文献   

17.
TR型磁浮列车气动力特性数值计算研究   总被引:6,自引:2,他引:6  
根据可压缩粘性流体的N S方程和k ε双方程湍流模型,采用有限容积法对TR磁浮列车的气动力特性进行了数值计算研究,得到了以不同速度运行的磁浮列车的气动阻力、升力及横向气动力的大小,为高速磁浮列车的安全运行控制提供了气动力数据。  相似文献   

18.
高速列车通过隧道的三维数值模拟   总被引:5,自引:0,他引:5  
通过有限体积法求解三维可压缩Navier Stokes方程,对高速列车突入隧道所引起的瞬变压力场进行数值模拟。采用低存储、低耗散和低弥散的龙格 库塔法(简称LDDRK法)对方程进行高精度的显式双时间步长离散,使用条件化预处理和人工压缩相结合的方法消除了低马赫数时在方程中所产生的"刚性",并改善了方程的收敛速度。采用分区重叠网格和滑移界面对流场进行离散,同时使用"挖洞技术"和三线性插值以进行各区域之间的信息传递,从而较好地解决了运动物体问题(单或多个运动物体均可)和各区域之间的藕合问题。  相似文献   

19.
高速列车车头的气动噪声数值分析   总被引:1,自引:0,他引:1  
随着列车运行速度的提高,列车气动噪声变得越来越明显,降低气动噪声已成为控制高速列车噪声的关键之一。本文对高速列车车头气动噪声进行数值分析。首先,建立高速列车三维绕流流场的数学物理模型,分别利用标准k-ε湍流模型和大涡模拟计算高速列车的外部稳态和瞬态流场。然后,基于稳态流场,利用宽频带噪声源模型计算高速列车车身表面气动噪声源;基于瞬态流场,分析车身表面脉动压力的时域及频域特性;利用Lighthill声学比拟理论,计算高速列车远场气动噪声,分析远场气动噪声的时域及频域特性。本文对研究和控制高速列车气动噪声具有一定意义。  相似文献   

20.
270 km*h-1高速列车气动力性能研究   总被引:6,自引:3,他引:3  
根据风洞试验结果,分析即将投入运营的我国270km·h-1高速列车气动力性能,研究各种外形对其的空气阻力、升力和横向力的影响。研究结果表明,减小气动阻力方面单拱头形稍优于双拱头形;车体底部采用底罩结构其阻力、升力绝对值远小于采用裙板结构;在气动横向力方面,双拱头形稍微优于单拱头形,双拱头形列车横向力作用位置低于单拱头形列车,其横向稳定性较好。根据研究结果,确定出与列车运行速度相匹配满足列车空气动力学性能要求的列车外形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号