首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
载液船舶破损后涉及液舱进水、泄漏、晃荡等复杂水动力耦合运动问题。通过液舱破损模型试验,对其静水中的自由横摇衰减运动进行分析,研究了不同初始横倾角、不同载液率对横摇、垂荡以及舱壁压力的影响以及运动响应与压力之间的关系。通过试验发现:浅水工况(12.5%载液率)下,液舱的运动响应最为剧烈;破口一侧下沉的扰动会造成更大运动响应以及舱壁砰击压力;舱壁砰击压力的相位与液舱横摇运动相位几乎一致。  相似文献   

2.
吴江涛  陈作钢 《船舶工程》2021,43(4):17-23,47
多液舱养殖工船需长时间系泊在深远海区域,载液率极高,所处海况复杂,对其开展耐波性研究尤为重要.基于黏性流理论,以Stokes 5阶波模拟实际规则波,借助VOF方法捕捉自由液面,采用重叠网格技术实现船体的自由运动,通过数值计算研究实尺度下液舱对不同频率横浪中工船运动响应的影响.计算结果表明,液舱晃荡对船体运动的影响随海况变化,当船体横摇运动2阶频率与液舱固有频率相近时会产生共振,液舱晃荡周期随之改变,从而使船体的横摇运动幅度增大近30%.此外,当船体两侧都布置液舱时,横浪中迎浪侧的液舱晃荡较背浪侧更为剧烈,其垂向受力幅值变化范围约为后者的3倍.  相似文献   

3.
针对多液舱养殖工船耐波性数值研究计算量过大的问题,建立了一套耦合数值求解系统。使用脉冲响应函数法求解船体运动方程,基于计算流体力学方法数值模拟液舱晃荡,在时域上离散求解两者的耦合方程。讨论了CFD软件FLUENT的用户自定义函数的编制,验证了横摇回转中心位于重心所在轴线的假设的合理性。为验证计算方法的有效性,在循环水槽中进行了不同载液率下的横摇自由衰减试验。对比数值模拟结果与试验结果,计算的横摇角时历与试验值吻合良好,验证了该方法的有效性,为高效数值研究养殖工船耐波性打下了基础。  相似文献   

4.
吴皓  刘强 《船舶工程》2022,(S1):267-274
为分析液舱晃荡和航速对养殖工船运动的影响,采用三维势流理论对一艘试验养殖工船的横摇、纵摇和垂荡进行频域数值计算,并通过Malenica提出的方法考虑液舱晃荡黏性的影响。应用脉冲响应函数法计算系泊工况下的时域耦合运动响应。结果表明,液舱晃荡对横摇运动影响较为显著,横摇固有频率发生偏移;对纵摇谐振幅值影响有限;对垂荡运动几无影响。随着航速的提高,横浪中航行的船舶横摇运动响应没有发生变化,而迎浪中航行的船舶纵摇谐振频率范围内的响应幅值则逐渐增加。试验养殖工船的横摇响应较大,计算结果与实船测量结果比较吻合。  相似文献   

5.
当载液货船在海上航行时,风、浪、流等环境载荷的作用会引起部分装载液舱产生液体晃荡现象。液舱晃荡不仅会对船舶安全带来一定的潜在风险,而且还会对海洋生态环境造成严重的威胁。本文针对不同装载率的双液舱自由衰减运动进行研究,通过分析双液舱在衰减运动过程中,液舱角速度变化情况和液舱壁面的抨击压力以及自由液面的波高变化,探究双液舱自由衰减运动的机理和规律,可为载液货船的设计和制造提供一定的依据。  相似文献   

6.
液舱晃荡对船舶横摇运动影响的数值研究   总被引:1,自引:0,他引:1  
为了研究加载液舱在船舶航行时舱内液体晃荡对船体横摇运动的影响,对船体外流场(波浪场)与液舱内流场(液体非线性晃荡)分别采用势流理论方法计算,建立了在波浪中船体与液舱流体晃荡耦合的时域运动方程。其中波浪中船体水动力和时延函数采用三维频域法和脉冲响应函数法计算获得,舱内液体非线性晃荡采用时域边界元法计算。对横浪中加载了方形液舱的15000GT集装箱船在不同液舱装载深度工况下,就液舱流体晃荡及其与船体运动耦合分别进行了计算模拟与验证。研究表明,耦合运动模拟结果能清晰地反映液舱晃荡对船体横摇运动的影响,数值结果与试验吻合良好,并具有较高的计算效率。  相似文献   

7.
多液舱晃荡与养殖工船时域耦合运动的数值模拟   总被引:1,自引:0,他引:1  
[目的]为研究多液舱养殖工船在横向波浪激励下,其液舱晃荡与船体运动的时域耦合问题,对其进行数值模拟。[方法]采用脉冲响应函数法预报船体运动,基于CFD理论模拟计算液舱晃荡问题,并讨论壁面剪切力对液舱晃荡的影响。为验证数值方法的可靠性,进行载液工船模型横摇自由衰减试验,并将试验结果与数值结果进行对比。同时,在此基础上,提出多液舱模型的二维简化方法。[结果]计算结果表明:在横向波浪激励下,波浪频率为0.5 rad/s时,液舱晃荡使养殖工船横摇幅值响应算子峰值增大了43%。液舱晃荡可能会给载液船舶的安全性带来风险,应该在设计阶段充分考虑。[结论]研究成果可为多液舱船的优化设计提供参考。  相似文献   

8.
本文基于黏性流理论,结合VOF方法进行了大型船舶液舱晃荡及制荡问题的数值研究.首先,证明了液舱纵向尺度对于横向晃荡的影响很小,可以用二维模型替代三维模型进行计算以提高效率,且对于特殊的对称液舱布置形式,40%载液率下施加一定周期的外部横摇激励,舷侧舱壁处的液舱晃荡更为剧烈;其次,完成了不同激励周期下的数值计算,结果表明激励周期在1~1.3倍液舱一阶固有周期范围内时液舱晃荡较为剧烈,其中一阶共振时两舱壁处波面升高及受力均达到最大值.此外,研究了不同隔板形式对制荡的影响,发现相同面积下垂向单隔板制荡作用较垂向双隔板和横向双隔板更为优越.最后,进行了实际尺度下的数值模拟,通过结果对比可知,模型尺度下计算得到的各隔板制荡作用弱于实际尺度下的模拟结果,存在一定的"安全裕量",验证了运用相似理论研究液舱晃荡的可行性.  相似文献   

9.
采用模型试验和计算流体力学(CFD)方法对一艘新型深远海养殖工船在规则波下的运动响应特性进行研究。针对载液率为81.5%的满载工况,将养殖水体替换为固体,探究自由液面对运动响应的影响;考虑载液率为81.5%和47.4%的2种载液状态,分析载液率对运动响应的影响。结果显示:数值计算结果与模型试验结果吻合良好;自由液面效应和较高的载液率均增大了横摇运动固有周期,减小了横摇运动响应幅值算子(RAO)峰值;自由液面效应和载液率对养殖工船的纵摇运动影响不大。  相似文献   

10.
为了研究液舱对高速弹体的防护机制,开展了高速弹体穿透液舱过程速度衰减特性的研究。在液舱弹道冲击试验的基础上,分析了液舱后靶板变形对弹体水中运动速度衰减效应的影响。以能量分析为基础,综合弹体穿甲运动方程和弹体在流场中运动速度衰减的规律,建立了简化分析模型,并推导了弹体侵彻液舱后的剩余速度公式。该模型综合考虑了前靶板背水、后靶板变形以及弹体墩粗对弹速衰减的影响。还针对试验中不同铝合金靶板厚度提出了两种弹体穿甲计算模型。计算结果表明:弹体撞击背水靶板时消耗更多能量;由于液舱后靶板的变形,弹体在水中运动的实际距离要大于初始液舱宽度,使得弹体的剩余速度进一步减小;弹体撞击中厚靶板会出现墩粗变形,从而增加了其在水中运动时的阻力。弹体剩余速度的理论模型与试验结果比较接近,文中给出了误差分析。  相似文献   

11.
基于改进VOF法的棱形液舱液体晃荡分析   总被引:2,自引:0,他引:2  
为了提高传统VOF数值方法计算棱形液舱晃荡载荷的效率和改进对棱形液舱边界数值模拟的精度,首先采用部分单元参数概念,对传统的VOF方法进行数值改进.然后采用改进的VOF方法对棱形液舱模型在不同充装水平,不同横摇激励周期条件下进行数值模拟,计算了舱内自由液面运动历程和舱壁各点冲击压力历程,并与实验结果进行了比较,得到与实验结果相一致的结论.同时通过网格敏感性分析,得到采用改进的VOF方法时的数值计算网格粗细对数值计算结果的精度影响较小的结论.  相似文献   

12.
陈星  蒋梅荣 《船海工程》2013,(5):99-104
为了解三维弹性液舱内液体晃荡情况,采用ADINA模拟不同激励频率下液舱内液体的晃荡,将所得的结果与解析解进行对比,得到不同载液率下弹性液舱内液体晃荡特点,得到液舱载液率、外界激励等参数变化对液体自由表面运动及晃荡荷载的影响.  相似文献   

13.
稳定性是船舶航行质量的重要指标,远洋航行的船舶受到海风、海浪的影响,往往会发生横摇、振荡等运动。其中,横摇是指船舶在风浪作用力下产生的周期性摇摆运动,甚至会引起船舶发生倾覆等危险事故。因此,船舶工业领域投入了大量的物力、财力开发船舶的减摇装置,常见的减摇装置包括减摇鳍、减摇水舱等。减摇水舱依靠船舶横摇运动的能量使水舱内的水流动,产生的力矩可以有效地降低船舶横摇,具有结构简单、成本低、易于控制等优点,广泛应用于集装箱运输船、科学考察船等。本文针对船舶的减摇水舱,在仿真平台Matlab中研究了减摇水舱的自动控制系统,并进行了减摇水舱的结构优化设计和控制响应的仿真。本研究对改善船舶减摇水舱的自动化水平,提高结构强度有一定的指导意义。  相似文献   

14.
波浪中载液船舶运动激励舱内液体的晃荡,舱内液体晃荡产生的冲击力同时作用在舱壁上,进而影响船舶的运动姿态。波浪中船体水动力和时延函数是在势流理论范畴下采用切片法和脉冲响应函数方法计算获得的,液舱内液体非线性晃荡是基于粘性流理论实时计算模拟,两者耦合建立了波浪中载液船舶与液舱流体晃荡耦合的运动方程。论文基于开源CFD开发平台OpenFOAM,自主开发实现了船体运动与液舱晃荡的耦合计算程序,并进行了相应的数值模拟计算和验证工作。该方法完整地考虑了波浪、船体和液舱晃荡之间的耦合作用,并结合船体内外流场特点分别采用了势流和粘性流理论,具有较高的计算效率。通过数值模拟计算和模型实验研究表明,数值模拟计算能够清晰显现出液舱晃荡对船体全局运动影响,船体运动计算结果与模型实验结果吻合良好。  相似文献   

15.
赵娜  拾路  任鹏  叶仁传 《船舶工程》2019,41(12):71-77
为了明确液舱在平头弹体侵彻下的变形毁伤特点,利用100%含水量液舱的高速侵彻实验,结合数值仿真方法,分析了平头弹作用下液舱含水量对舱壁动态响应的影响规律。结果表明:在相同含水量条件下,弹体初速度越高,弹体在水中的速度衰减越快,耗散的动能越多;同时弹体速度的衰减也随液舱含水量的增加而增大。弹体动能的耗散使得舱内形成空泡,且空泡尺寸随弹体速度的增加而增大。液舱壁由于空泡的作用产生了外凸变形,且其变形量随弹体速度及含水量的增加而增大;当液舱部分含水时,舱壁出现非对称变形,液面下的舱壁的最大变形量与满舱时近似相等。  相似文献   

16.
矩形液舱晃荡冲击载荷的试验机理研究   总被引:2,自引:0,他引:2  
在不同外激振幅和频率下,采用大尺度模型试验方法对矩形液舱内液体晃荡产生的冲击压力进行了研究,主要包括在不同载液率下,液舱内的短期晃荡冲击载荷特性、冲击载荷的统计特性、时空分布规律及外激振幅和频率与晃荡冲击载荷的关系。试验结果表明,低载液率时自由液面附近冲击载荷大,高载液率时顶部冲击载荷大,30%时自由液面冲击载荷最大,低载液率时自由液面最大冲击力约为静水压力的3.5~4.5倍,外激频率越接近自由液面固有频率,冲击荷载的梯度受振幅的影响越大。文中研究可为计算晃荡载荷提供参考,并对液舱设计具有一定指导意义。  相似文献   

17.
金鸿章  张宏瀚 《船舶力学》2011,15(10):1082-1089
被动可控式U型减摇水舱利用气阀开关控制水舱内液体运动,使之与船舶横摇运动保持π/2相位差。文章针对在随机海浪下水舱被动控制中存在的问题,提出了由两个被动可控式减摇水舱组成的被动可控式双水舱减摇系统,文中对双水舱系统的数学模型及系统设计方法进行了研究,并提出利用不同的船舶横摇信号分别控制两个水舱内液体流动的被控式PD控制策略。以高速滚装船为例,对双水舱系统进行了计算机仿真,仿真结果表明被动可控式双水舱系统在更宽的海浪干扰频率范围内具有更好的减摇效果。  相似文献   

18.
欧珊  毛筱菲  金萌  吴铭浩 《船舶力学》2015,(9):1050-1061
在探讨带平面被动式减摇水舱的海洋平台工作船在横浪中的减摇问题上,采用RANS方法进行船舶和水舱的强迫运动模拟,通过数值处理得到船舶和水舱的水动力系数。假设在共振频率下船舶和水舱的横摇运动在达到稳态后可以解耦,由非线性动力学的方法求解船舶横摇运动,并在波浪中进行系列模型试验以研究减摇特性。海洋平台工作船具有多工况的特点,不同载况对应不同船舶固有周期,实际航行中对减摇水舱的使用就是通过改变水舱水深使水舱的周期等于船舶固有周期,而通过上述方法的快速计算,选择合适的水深和阻尼隔板可以达到理想的减摇效果。结论表明该方法可以预报不同方案下的船舶横摇运动,该思路在船舶的减摇水舱设计阶段可以提供参考价值,并且在实船航行中可以提供水深加载指导以适应复杂的多工况航行。文中研究结果被运用于一艘实船航行时水舱加水策略中。  相似文献   

19.
大型LNG船液舱晃荡冲击载荷的合理预报是液舱结构安全性设计和评估的基础。针对部分装载的LNG船液舱的晃荡载荷开展数值预报方法研究,建立了合理的数值模型和计算方案。通过典型菱形液舱的三维晃荡模型试验,获得LNG液舱在各种运动模式下流体拍击舱壁的冲击载荷特性。在数值计算和对比分析中,首先对舱内液体在各种运动模式下的晃荡固有频率进行了搜索,然后在各个固有频率下进行了变幅值激励和耦合运动激励下的冲击压力计算,得到了不利运动工况下的冲击压力预报结果。数值模拟结果与模型试验结果的比较表明,提出的液舱晃荡数值计算方法能够合理地预报大型LNG船液舱晃荡载荷特征。在此基础上,对各种载液水平和运动模式下大型LNG船液舱内壁的压力分布进行了详细计算,可供液舱围护系统结构设计和安全性评估参考。  相似文献   

20.
崔铭超  王庆伟  张彬 《船舶工程》2020,42(10):56-60
发展以大型游弋式养殖工船可为深蓝渔业提供新的养殖手段。本文基于STAR-CCM数值计算软件研究了纵摇运动下养殖液舱内流场特性和壁面压力,建立了养殖液舱内适渔性的评估方法。典型海况中船舶纵摇运动对养殖液舱中流场的影响研究表明:当养殖液舱纵摇频率一定时,液舱内流速及壁面压力随纵摇幅值增大而增大;当养殖液舱纵摇与养殖水体发生共振时,液舱内流速及壁面压力急剧增大,对养殖对象安全及结构强度均有较大不利影响。对于海上养殖工船的养殖安全运行,选择风浪流条件合适的渔场,结合船体耐波性研究,优化船体型线,调节养殖舱水体固有频率,避开共振运动,是养殖工船适渔性研究的一个重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号