首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
A ship's tail shaft has serious flexural vibration due to the cantilevered nature of the propeller's blades. Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock absorption for a ship's tail shaft. A mathematic model of tail shaft flexural vibrations was built using the transfer matrix method. The nature frequency of flexural vibration for an electrically propelled ship's tail shaft was then analyzed, and an effective method for calculating it was proposed: a genetic algorithm (GA), which calculates the nature frequency of vibration of a system. Sample calculations, with comparisons by the Prohl method under conditions bearing isotropic support, showed this method to be practical. It should have significant impact on engineering design theory.  相似文献   

2.
A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory.This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory.The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency.Also,the results obtained through the method can be used to determine the range of application of the thin shell theory.Furthermore,the proposed method can deal with the problems limited by the thin shell theory.Additionally,the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell,damped cylindrical shell,and double cylindrical shell.  相似文献   

3.
Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.  相似文献   

4.
Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heavily shocked floating rafts unreliable, especially when the allowable values The conventional approach to prediction has been or ultimate values of vibration isolators of supposedly uniform standard in a raft actually have differing and uncertain values due to defective workmanship. A new model for predicting damage to vibration isolators in a shocked floating raft system is presented in this paper. It is based on a support vector machine(SVM), which uses Artificial Intelligence to characterize complicated nonlinear mapping between the impacting environment and damage to the vibration isolators. The effectiveness of the new method for predicting damage was illustrated by numerical simulations, and shown to be effective when relevant parameters of the model were chosen reasonably. The effect determining parameters, including kernel function and penalty factors, has on prediction results is also discussed. It can be concluded that the SVM will probably become a valid tool to study damage or vulnerability in a shocked raft system.  相似文献   

5.
A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship’s parameters were not required to be known. An adaptive observer was first designed to estimate the ship’s velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov’s direct method to force the ship’s position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.  相似文献   

6.
To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix method and finite element method respectively. According to the comparison of the nature frequency results and mode shape results, the fact that FEM method is more suitable to dynamic characteristics analysis of a WPC was pointed out, special features on dynamic characteristics of WPC were given, and some beneficial suggestions are proposed to optimize the strength of a WPC in design period.  相似文献   

7.
The effect of the mass ratio on the flow-induced vibration(FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800–13,000, and the reduced velocity(velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio(ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios(ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder(nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line(IL) and cross-flow(CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.  相似文献   

8.
Based on wave theory, blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal. The analysis model of a complex structure was developed by combining statistical energy analysis and the finite element method. Based on the hybrid FE-SEA method, the vibro-acoustic response of a complex structure was solved. Then, the sound radiation of a cylindrical shell model influenced by blocking mass was calculated in mid/high frequency. The result shows that blocking mass has an obvious effect on impeding propagation. The study provides a theoretical and experimental basis for application of the blocking mass to structure-borne sound propagation control.  相似文献   

9.
Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence of its weight as well as the cross-section shape parameters on the isolation performance of rigid vibration isolation mass was studied through numerical simulation.The results show that rigid vibration isolation mass can effectively impede the propagation of the medium and high frequency vibration waves,and the heavier the vibration isolation mass,the better the isolation performance.For low frequency waves,the vibration isolation effect is not so obvious;for a rectangular vibration isolation mass,the isolation performance could be effectively improved by increasing the cross-section height and reducing the cross-section width.A useful reference was provided for the application of rigid vibration isolation masses to the vibration isolation and noise reduction of ship structure.  相似文献   

10.
Based on existing low-frequency water-filled impedance tube testing facilities, which is a part of the Low Frequency Facility of the Naval Undersea Warfare Center in Beijing, an improved water-filled pulse tube method is presented in this short paper. This proposed study is significantly different from the conventional pulse tube method because of the capability for a single plane damped sine pulse wave to generate in the water-filled pulse tube with a regular waveform and short duration time of about 1ms. During the generation process of the pulse, an inverse filter principle was adopted to compensate the transducer response. The effect of the characteristics of tube termination can be eliminated through the generation process of the pulse. Reflection coefficient from a water/air interface was measured to verify the proposed method. When compared with the expected theoretical values, a relatively good agreement can be obtained in the low frequency range of 500-2 000 Hz.  相似文献   

11.
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.  相似文献   

12.
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.  相似文献   

13.
A high-efficiency propeller can enable a long mission duration for autonomous underwater vehicles (AUVs). In this study,a new method with OpenProp coupled with computational fluid dynamics was developed to design a propeller for an Explorer100 AUV. The towed system simulation of the AUV was used to measure the nominal wake, and a self-propulsion simulation was used to measure the effective wake at the disc plane just in front of a propeller. Two propellers referring to the nominal wake (propelle...  相似文献   

14.
This paper proposes the finite element simplified fatigue analysis method for fatigue evaluation of the composite non-tubular joint structure of an offshore jacket subjected to wave loads. The skirt pile sleeve of the offshore jacket, which had been in service, was taken as an example of the non-tubular joint structure. SACS software was used for global analysis of multi-directional wave loads for the jacket platform, and ALGOR software was used to build a finite element model, perform finite element analysis, post-process stress results for acquiring the stress range, and perform fatigue evaluation. The analysis results indicate that the extreme stress range is within the allowable stress range and meets the requirements of DNV code. That means the simplified fatigue analysis method is effective and can be used in fatigue design for the non-tubular joint structure of an offshore jacket.  相似文献   

15.
Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.  相似文献   

16.
[Objective]This paper studies the coupled damage effects of a ship's structure due to the internal blast loading of a warhead. [Methods]Blast tests with cased charge data are conducted to verify the effectiveness of the coupled SPH-FEM approach, and numerical calculations are then performed on real ship compartment scale model tests to analyze the coupled fragmentation and shockwave damage effects of an explosion in a confined cabin.[Results]The results show that the fragments caused by the detonation of the warhead will first cause local damage to the cabin structure. The shockwave will exacerbate the local damage, and blasted openings will further increase the space for the propagation and diffusion of the shockwave inside the chamber, which will in turn cause damage to the adjacent structures. The simple equivalence of the warhead to a bare charge does not give a true picture of the effect of the warhead on the ship's structure, and fragmentation plays a significant role in the detonation of the warhead.[Conclusions]The results of this study show that employing the coupled SPH-FEM numerical method to calculate the coupling damage effects on a ship's structure can accurately reproduce the warhead damage pattern in tests, thereby providing support for the improved assessment of the damage of naval structures under warhead detonation. © 2022 Chinese Journal of Ship Research. All rights reserved.  相似文献   

17.
The structures in engineering can be simplified intoelastic beams with concentrated masses and elastic spring supports.Studying the law of vibration of the beams can be a help in guidingits design and avoiding resonance. Based on the Laplace transformmethod, the mode shape functions and the frequency equations ofthe beams in the typical boundary conditions are derived. Acantilever beam with a lumped mass and a spring is selected toobtain its natural frequencies and mode shape functions. Anexperiment was conducted in order to get the modal parameters ofthe beam based on the NExT-ERA method. By comparing theanalytical and experimental results, the effects of the locations ofthe mass and spring on the modal parameter are discussed. Thevariation of the natural frequencies was obtained with the changingstiffness coefficient and mass coefficient, respectively. The findingsprovide a reference for the vibration analysis methods and thelumped parameters layout design of elastic beams used inengineering.  相似文献   

18.
19.
Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.  相似文献   

20.
Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号