首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present study proposes an objective handling qualities evaluation method using driver-in-the-loop analysis. The driving simulator experiments were performed for various driving conditions, drivers and vehicle dynamics. The response characteristics of the driver model and the closed-loop system were analyzed. The analysis revealed the driving strategies clearly, indicating the importance of closed-loop analysis. Using the identified driver model and its strategies, a cost function of the handling qualities was constructed. The cost function can be used to estimate the handling qualities analytically from the vehicle dynamics. The proposed method was validated by comparison with the handling qualities evaluation rated by the driver's comments.  相似文献   

2.
Modelling of Driver/Vehicle Directional Control System   总被引:5,自引:0,他引:5  
Different driver models and driver/vehicle/road closed-loop directional control systems are reviewed and compared. Evaluation methods of vehicle handling quality based on closed-loop system dynamics, stability of the closed-loop system, and optimization of vehicle design are discussed.  相似文献   

3.
Abstract

Different driver models and driver/vehicle/road closed-loop directional control systems are reviewed and compared. Evaluation methods of vehicle handling quality based on closed-loop system dynamics, stability of the closed-loop system, and optimization of vehicle design are discussed.  相似文献   

4.
汽车操纵稳定性的主观评价   总被引:9,自引:0,他引:9  
宗长富  郭孔辉 《汽车工程》2000,22(5):289-292,309
本文介绍了汽车操纵稳定性的主观评价方法,探讨了影响主观评价的因素。利用吉林工业大学的开发型车辆驾驶模拟器进行了汽车稳定性的主观评价试验,采用一对一即时比较法实现了14个车辆方案易操纵性的驾驶员主观评价排序,并进行了操纵稳定性定量评价指标与主观评价的相关分析。  相似文献   

5.
Due to increasing demands for time and cost efficient vehicle and driver assistant systems development, numerical simulation of closed-loop manoeuvres becomes increasingly important. Thus, the driver has to be considered in the modelling. On the basis of a two-layer approach to model a driver's steering behaviour, the field of application is extended to higher lateral accelerations in this study. An analytical method to determine the driver parameters is presented, which is based on the two-wheel vehicle model. The simulation results are determined using a full vehicle model including all essential nonlinearities. Standard manoeuvres in the nonlinear range of vehicle handling behaviour are performed. A cornering manoeuvre is chosen to show the characteristics of the proposed driver model.  相似文献   

6.
Due to increasing demands for time and cost efficient vehicle and driver assistant systems development, numerical simulation of closed-loop manoeuvres becomes increasingly important. Thus, the driver has to be considered in the modelling. On the basis of a two-layer approach to model a driver's steering behaviour, the field of application is extended to higher lateral accelerations in this study. An analytical method to determine the driver parameters is presented, which is based on the two-wheel vehicle model. The simulation results are determined using a full vehicle model including all essential nonlinearities. Standard manoeuvres in the nonlinear range of vehicle handling behaviour are performed. A cornering manoeuvre is chosen to show the characteristics of the proposed driver model.  相似文献   

7.
This paper proposes an advanced steering system that adaptively varies the static gain and dynamics of the steering system. The steering system gain is adjusted, depending on whether the driver is in an aggressive or leisurely driving mood. The steering system dynamics is so designed that the command mode of the steering system will be either a rate-command or an attitude-command according to the lateral control task performed by the driver. The recognition system for lateral control tasks, a lane-following or lane-change task is proposed. The findings of simulator tests indicate proposed advanced steering system would remarkably improve the vehicle handling qualities.  相似文献   

8.
This paper proposes an advanced steering system that adaptively varies the static gain and dynamics of the steering system. The steering system gain is adjusted, depending on whether the driver is in an aggressive or leisurely driving mood. The steering system dynamics is so designed that the command mode of the steering system will be either a rate-command or an attitude-command according to the lateral control task performed by the driver. The recognition system for lateral control tasks, a lane-following or lane-change task is proposed. The findings of simulator tests indicate proposed advanced steering system would remarkably improve the vehicle handling qualities.  相似文献   

9.
The response simulation is studied and the handling safety is evaluated using finer integration method for driver-vehicle closed-loop system with stationary random road input. This algorithm is not only precise, but can also shorten the evaluation period of handling safety and reduce the tremendous cost for real vehicle testing. The response simulation and the vehicle handling safety evaluation are also studied for the closed-loop system with evolutionary random road input. The study can more truly simulate vehicle handling quality for including the varying of vehicle velocity with time.  相似文献   

10.
The response simulation is studied and the handling safety is evaluated using finer integration method for driver-vehicle closed-loop system with stationary random road input. This algorithm is not only precise, but can also shorten the evaluation period of handling safety and reduce the tremendous cost for real vehicle testing. The response simulation and the vehicle handling safety evaluation are also studied for the closed-loop system with evolutionary random road input. The study can more truly simulate vehicle handling quality for including the varying of vehicle velocity with time.  相似文献   

11.
SUMMARY

Advanced Steering System with artificial steering wheel torque-active kinesthetic information feedback for improving handling qualities is discussed. Fundamentally the structure of the system may be considered to another form of model following control. In this system, a driver always remains in the control loop and receives steering control information which give him/her a direct hint to steer a steering wheel. This system works as a stability and control augmentation system of the vehicle to improve the vehicle handling qualities both in compensatory and pursuit control task, and is expected to reduce driver's workload. Effects of this system are analyzed in terms of man-machine system characteristics. Identification of driver dynamics was carried out to find why such improvement could be achieved. Availability of the proposed system is verified by analysis, simulator and proving ground tests.  相似文献   

12.
汽车操纵稳定性的模拟器闭环评价与试验方法   总被引:2,自引:0,他引:2  
本文以汽车操纵稳定性的闭环评价为目的,利用吉林大学汽车动态模拟国家重点实验室的开发型驾驶模拟器(ADSL驾驶拟器)进行了汽车操纵稳定性的闭环试验研究。提出汽车操纵稳定性的评价应是包含驾驶员在内的闭环系统评价,并建立了汽车操纵稳定性的模拟器闭环试验方法,利用模拟器试验对汽车操纵稳定性综合评价指标的合理性进行了验证。  相似文献   

13.
Advanced Steering System with artificial steering wheel torque-active kinesthetic information feedback for improving handling qualities is discussed. Fundamentally the structure of the system may be considered to another form of model following control. In this system, a driver always remains in the control loop and receives steering control information which give him/her a direct hint to steer a steering wheel. This system works as a stability and control augmentation system of the vehicle to improve the vehicle handling qualities both in compensatory and pursuit control task, and is expected to reduce driver's workload. Effects of this system are analyzed in terms of man-machine system characteristics. Identification of driver dynamics was carried out to find why such improvement could be achieved. Availability of the proposed system is verified by analysis, simulator and proving ground tests.  相似文献   

14.
高振海  管欣  李谦  郭孔辉 《汽车工程》2002,24(5):434-437
利用预瞄跟踪理论、模糊决策理论和非线性系统描述函数法建立了一个驾驶员速度控制模型,即加强员最优预瞄纵向加速度模型,仿真结果表明,该模型通过对驾驶安全性、合法性、轻便性、驾驶员自身滞后特性及汽车动力学系统强非线性特性的考虑,可以有效地模拟驾驶员控制汽车速度的行为特性,为人-车-路闭环系统中速度控制研究提供了一条可行途径。  相似文献   

15.
Modelling of vehicle handling dynamics has received a renewed attention in recent years. Different from traditional vehicle modelling, a novel data-driven identification method for vehicle handling dynamics is proposed, which can avoid the problems of the under-modelling and parameter uncertainties in the first-principle modelling process. By first-order Taylor expansion, the nonlinear vehicle system can be linearised as a slowly linear time-varying system with fourth-order. In order to identify the derived identifiable model structure, a recursive subspace method is presented. Derived by optimal version of predictor-based subspace identification (PBSIDopt) and projection approximation subspace tracking (PAST), the identification method is numerical stability and gives an unbiased estimation for the closed-loop system. Based on standard road tests, the proposed modelling method is proven effective and the obtained model has good predictive ability. Additionally, it is noted that the model obtained from the initial phase of straight driving is just a mathematical model to describe the relationship between input and output. And when the vehicle is steering, the model can converge to a stable phase quickly and represent vehicle dynamic performance.  相似文献   

16.
In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.  相似文献   

17.
The aim of this work is to develop a comprehensive yet practical driver model to be used in studying driver–vehicle interactions. Drivers interact with their vehicle and the road through the steering wheel. This interaction forms a closed-loop coupled human–machine system, which influences the driver's steering feel and control performance. A hierarchical approach is proposed here to capture the complexity of the driver's neuromuscular dynamics and the central nervous system in the coordination of the driver's upper extremity activities, especially in the presence of external disturbance. The proposed motor control framework has three layers: the first (or the path planning) plans a desired vehicle trajectory and the required steering angles to perform the desired trajectory; the second (or the musculoskeletal controller) actuates the musculoskeletal arm to rotate the steering wheel accordingly; and the final layer ensures the precision control and disturbance rejection of the motor control units. The physics-based driver model presented here can also provide insights into vehicle control in relaxed and tensed driving conditions, which are simulated by adjusting the driver model parameters such as cognition delay and muscle co-contraction dynamics.  相似文献   

18.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

19.
Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.  相似文献   

20.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号