首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为提高动力电池包的温度一致性,基于STAR-CCM+对其液冷板流场及电池包温度场进行计算流体力学仿真分析。通过优化液冷板各汇流管管径,减小了各板间的流量偏差,使得最大流量偏差为9%。进而分析电池包温度场,结果表明,模组间最大温差为2.2℃,优化汇流管管径可以有效提高电池包的温度一致性。  相似文献   

2.
本文根据混合动力汽车整车特性及动力电池工作特性,提出一种创新有效的动力电池热管理系统解决方案。该方案将发动机热管理系统、驾驶室空调系统和电池热管理系统进行了集成化设计,利用发动机余热对动力电池进行加热,同时采用同一套空调系统对驾驶室和电池进行制冷。然后,根据动力电池所需制冷功率以及加热功率,对动力电池热管理系统进行设计计算及零部件匹配选型。最后开展实车测试验证,证明了动力电池热管理系统设计方案满足要求,本文提出的动力电池热管理系统解决方案可靠有效。  相似文献   

3.
阐述客车动力电池热管理系统液冷循环的设计要求,分析在不同电池数量及布置方式下如何设计管路连接来满足系统循环流量和排气需要.  相似文献   

4.
根据某款三元动力电池的热特性,结合整车现有的空调和正温度系数加热元件(PTC)采暖系统,设计了针对该三元电池温度控制的液冷液热系统。在确保动力电池在高温条件下能正常工作的同时,解决了该三元电池在低温下无法充电或充电时间过长的问题。  相似文献   

5.
为了改善某商用车动力电池组的散热能力,降低电池组冷却系统的能耗,提出了一种并联非等长直流道的液冷板结构.以方形锂离子电池组为研究对象,建立液冷式锂离子电池组冷却系统的仿真模型,对液冷板结构进行优化.结果表明:该液冷板在满足电池组散热能力的同时能够较好地控制液冷板压降;结构优化后的液冷板流动阻力最大降低12.5 kPa,...  相似文献   

6.
针对传统液冷电池包内电池组散热不充分及表面温度一致性较差的问题,本文设计了一种基于风冷和液冷耦合 冷却策略的新型电池包结构,利用Catia软件建立三维模型并运用Fluent软件进行仿真,研究结果表明,相较于单一液冷 结构在2 C和2.5 C放电倍率下存在电池组过热问题,风冷液冷耦合的冷却结构在不同放电倍率下将最高温度和最大温差 分别控制在45 ℃和5 ℃以内。探究了不同流体进口速度对电池组散热的影响,并选取风速5 m/s,冷却液流速0.5 m/s的 最佳配合,在此基础上对流道进行针对性的优化,优化后电池组在同一工况下最高温度从27.95 ℃下降至26.82 ℃。这种 新型结构将为后续的电池的热管理设计提供新思路。  相似文献   

7.
动力电池热管理的目标不仅是保证电池模组在合适的温度范围内工作,而且要尽量保证模组内部温度均匀。液冷板是电池模组主动液体冷却系统的一个重要组成部分,此前对电池热管理的研究大多集中在液冷板流道结构及冷板排布方式对电池模组温度分布的影响,而忽略了冷却液的沿程温升对模组温度均匀性的影响。根据间壁式传热原理,提出采用液冷侧非线性强化传热的方式,以实现热源侧壁面温度均匀分布的均温液冷板结构。以某一动力电池模组液冷散热要求为例,构建了非线性传热强化液冷均温板模型,并进行了相应的数值模拟。结果表明,提出的均温液冷板能有效实现动力电池模组均温性要求。  相似文献   

8.
动力电池在低温环境中功率特性变差和充放电效率下降是制约电动汽车发展的因素之一。为提升动力电池低温动力性,基于AMESim的1D仿真模型对不同热管理方案下动力电池目标功率的持续时间进行了研究。结果表明,动力电池预加热方案在一定程度上提升了动力电池低温动力性,但是预加热方案不仅受预加热电量来源、动力电池初始SOC以及环境温度的影响,还会在动力电池初始SOC较高时造成电量浪费;动力电池预加热+行驶加热方案不仅能提升动力电池低温动力性,还可以避免动力电池在初始SOC较高时进行预加热造成电量浪费。通过不同热管理方案下动力电池低温动力性的研究,对电动汽车低温行车过程中热管理方案提供一定的指导。  相似文献   

9.
10.
为提高动力电池液冷系统和加热系统的冷却和加热效果与安全性,本文中基于理论分析和数值模拟的方法设计了一种新型冷热集成系统。其中,液冷板采用独立式盘绕铝管嵌入铝材基板结构,并设计了流量分区以适应电池模组差异化的冷却需求,而低温条件下电池模组的快速加热,则通过集成PTC热敏电阻模块来实现。实验结果表明,在环境温度为40℃条件下进行快速充电和大功率放电循环时,电池包4个分区的最高温度均低于45℃,且各分区温差在1℃左右;在环境温度为-20℃时,内部加热方案可快速将电池包温度由-20℃上升至可大电流充电的温度,且其能耗比外部循环加热方式降低41.4%。  相似文献   

11.
为提升电池热管理系统(BTMS)散热效果,采用计算流体力学(CFD)和基于快速非支配排序遗传算法(NGSA-II)的多目标优化相结合的方法设计优化了一种新型液冷板模型。通过电池实验,得到不同放电倍率下单体电池产热量。以通道夹角、通道宽度、冷却液的质量流量为设计变量,平均温度、温度标准差和压降为目标函数,采用拉丁超立方体抽样(LHS)方法,在设计空间中选取了35个设计点,利用响应面近似模型(RSM)拟合出目标函数的表达式。结果表明:在5C放电倍率下,优化后液冷板的散热性能得到有效提升,与初始模型相比,液冷板的平均温度和温度标准差分别下降了11%、51.2%,压降仅增加了3.3Pa。  相似文献   

12.
采用数值模拟的研究方法,对比分析了某纯电车型在高速超速以及驱动耐久工况下动力电池包采用液冷和冷媒直冷两种方案的冷却性能,研究结果表明,对于高速超速工况,相对于液冷方案,采用冷媒直冷电池包温度降低了约10%;对于驱动耐久工况,采用冷媒直冷方案电池包温度降低了约 16%,与此同时,电池包均温性也有所改善。在相同工况条件下,动力电池包冷媒直冷的冷却性能优于液冷。  相似文献   

13.
电池组在高环境温度下以高倍率放电时,电池组温度过高、温差大,极易引发安全问题。笔者针对这一问题设计了一种新的耦合式电池热管理系统。以采用纯石蜡冷却模型作为初始模型,首先探讨不同膨胀石墨质量分数的复合相变材料对于电池组热性能的影响,得出:在30℃的环境温度下,电池组以4C倍率放电时,采用EG质量分数为12%的复合相变材料对电池组进行冷却最优。在最优复合相变材料的基础上引入液冷系统,构建克里格近似模型,采用NSGA-Ⅱ遗传算法对耦合系统寻优,得出的预测结果精度较高误差最大仅为0.21%。利用算法寻优得出的最优解与初始模型相比,电池组最高温度下降5.29℃降幅为11.46%,最大温差下降0.12℃降幅为54.09%。结果表明:相变材料与液体冷却耦合热管理系统对电池组控温效果显著。  相似文献   

14.
动力蓄电池风冷热管理系统的研究   总被引:2,自引:0,他引:2  
对120节6A.h镍氢电池进行热管理系统的结构设计。利用均匀送风理论,对热管理系统中空气流速的均匀性做了深入分析。研究了电池组倾角、空气流量和风道开孔等结构参数对空气流速的影响。根据研究结论,通过改变电池包的结构和调节电池周围空气的流速,提高了蓄电池的可靠性、耐久性和电池成组后的体积比功率。  相似文献   

15.
针对应用于车用动力电池热管理的重力型热管开展了建模与仿真研究,采用控制变量法分析了不同充液率、内壁面接触角和初始压力对热管启动性能与换热特性的影响。结果表明,随着充液率的增大,传热性能在提升,当充液率为85.7%时传热速率达到峰值。随着接触角的增大,传热性能在降低,当接触角为60o时传热速率达到峰值。随着初始压力的增大,传热性能在降低,当初始压力为3 361 Pa时传热速率达到峰值。  相似文献   

16.
随着国家排放节能减排要求愈发严格,汽车发展日趋电动化,越来越多的传统汽车厂家都选择在当前传统车平台上开发混合动力汽车作为纯电动汽车的过渡车型.混合动力汽车的电池为动力电池,由于电池容量小放电倍率高,如不进行主动冷却导致电池的温度急剧攀升.本文主要介绍一种比较先进的电池包双冷却液冷系统设计理念,通过对比当前市场常见风冷系...  相似文献   

17.
电池系统作为纯电动汽车惟一的动力来源,其热管理设计对电动汽车工作性能至关重要.采用隔热材料、空调压缩机散热、半导体制冷风扇散热3种方法进行电池组热管理设计,进行高温环境下的热性能测试,结果表明:隔热设计可有效减少高温热辐射进入电池箱内部,降低电池组温度受外部高温环境的影响;在电动汽车行驶过程中,隔热材料未明显增加电池组的温升;相对其他两种设计,隔热设计的热管理效果明显、结构简单、成本低、易于产业化.  相似文献   

18.
为解决车用锂离子动力电池在高强度工作过程中电池温度过高以及电池组温均性差等问题,需要对电池组设计合理的电池热管理系统(BTMS),以此提升电池组的冷却性能.首先阐述了热管理系统的常见冷却方式,分析了各种冷却方式之间的优缺点.随后针对应用最为广泛且最易实现的空气冷却方式,从冷却空气流型、电池排布方式、电池间距、冷却空气流...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号