共查询到16条相似文献,搜索用时 46 毫秒
1.
弧形防浪墙具有优良的返浪效果,工程应用较多。本文以弧形防浪墙为例,基于OpenFOAM开源程序,应用雷诺平均Navier-Stokes方程描述流体运动,建立了波浪与结构物作用的二维数值模型。通过试验验证所建立的数值模型,探讨不同形式弧形防浪墙所受波浪压强分布特点的异同、弧形防浪墙圆弧半径对所受波浪力的影响。结果表明:在不同波浪要素条件下,弧形防浪墙迎浪面所受波浪压强随测点高程的增大而减小,同一测点上所受波浪压强随弧形防浪墙圆弧半径的增大而减小。防浪墙迎浪面受到的波浪力随着波高的增大而增大,随波长的增大先增大、再减小、再增大,且在波长最大时波浪力达到最大值。在相同波长下,波浪力随圆弧半径增大而减小。 相似文献
2.
3.
文中通过物理模型试验开展了不同参数的波浪对不同结构型式直立堤弧形防浪墙的作用研究,对不同结构型式的直立堤弧形防浪墙所受到的波浪作用的试验数据进行了统计分析,讨论了波浪压强在直立堤弧形防浪墙迎浪面的分布特征,以及波浪压强与入射波波高H、波浪周期T的关系;比较了不同结构型式直立堤弧形防浪墙上波浪压强的分布特点. 相似文献
4.
5.
6.
弧形防浪墙的模型试验 总被引:2,自引:3,他引:2
通过物理模型试验,测量不同底高程条件下防浪墙顶部的越浪量、迎浪面及底面上的波浪压强和防浪墙的整体稳定性。对测量数据进行分析后的结果表明:在相同的波浪要素和水位条件下,防浪墙底面高程的差别将直接影响到迎浪面和底面上波浪压强的大小以及防浪墙的整体稳定性等。最后,根据模型试验结果,给出有助于弧形防浪墙设计的一些建议。 相似文献
7.
8.
9.
采用WRF风场模式和SWAN海浪模式,分别进行渤海湾的风场和波浪场后报计算,并以波浪气象浮标实测数据对风场和波浪场进行验证,效果良好。以后报结果为样本,采用P-Ⅲ型拟合方法,对莱州湾湾口-15 m等深线处的风场与波浪进行统计分析,得到50 a一遇的设计要素值。运行MIKE21 SW模块建立潍坊港海域的波浪数值模型,进行50 a一遇重现期下的波浪浅水传播计算。模拟结果表明,该模型适用于模拟潍坊港附近海域的波浪传播过程,计算结果可为港区的码头、沙堤和航道等的设计和建设提供参考 相似文献
10.
弧形防浪墙的迎浪面波压力数值模拟 总被引:1,自引:0,他引:1
以Navier-Stokes方程为控制方程,使用VOF方法追踪自由液面,对FLUENT进行二次开发,将各功能区的源项表达式添加到动量方程中,从而实现动量源造波和消波。模拟二阶Stokes波作用下不同断面形式防浪墙的流场和波压力,并将计算结果与物理模型试验数据进行对比,结果吻合较好。比较直立式和弧形防浪墙波浪压力数值计算结果可以发现,在相同水位和波浪要素情况下,作用在圆弧墙上的最大点压强明显大于直立墙,而且最大压强发生在圆弧部分,工程中应该对圆弧部分进行加固处理。 相似文献
11.
以复合式海堤弧形胸墙为研究对象,选择3个因素——水深、波高、波周期,每个因素取4个水平,按照正交表L16(43)设计相关试验组次研究上述因素对复合式海堤弧形胸墙波浪载荷的影响显著性。同时研究弧形胸墙波压力分布规律和波浪载荷时程变化规律。结果表明:对于弧形胸墙压力即时分布,点位与点位之间没有固定的大小关系,但整体上来说,胸墙迎浪面下半部分的波压力普遍大于上部分;在单个波浪周期作用过程中,水平波浪力存在2个峰值,垂向波浪力存在1个峰值2个谷值,垂向波浪力峰值与水平波浪力第1个峰值几乎同时达到,此时对胸墙的稳定性最为不利;水深对波浪载荷的影响最为显著,波高其次,波周期的影响相对最小。 相似文献
12.
作用在直墙上的近破波对建筑物具有极大的破坏力,其作用机理非常复杂,至今尚无统一认识。利用粒子图像测速(PIV)技术与高精度压力传感器对直墙前的近破波流场和破波压力进行了同步测试,通过流场结构与破波压力的同步对比分析,探讨了近破波对直立建筑物的作用机理。 相似文献
13.
斜坡堤胸墙的稳定性主要受到波浪作用的影响,而且实际工程中斜坡堤多受斜向波浪作用。通过斜向与正向不规则波对斜坡堤胸墙作用的物理模型试验研究,分析斜坡堤单个胸墙所受的斜向波浪总力的折减系数随水位和波浪入射角度的变化规律,并与斜向波浪对单元直立堤的作用情况进行对比。结果表明:斜坡堤单个胸墙所受的斜向波浪总力的折减系数总体上随着水位的降低而变小,随着波浪入射角度的减小而变小;斜向波浪总浮托力的折减系数一般小于总水平力的折减系数;在不同水位和波浪入射角下,斜坡堤单个胸墙所受的斜向波浪总力的折减系数与单元直立堤有一定差别。 相似文献
14.
Martin Petricic 《Marine Structures》2011,24(2):97-116
This paper proposes a new method for combining the lifetime wave-induced sectional forces and moments that are acting on the ship structure. The method is based on load simulation and can be used to determine the exceedance probabilities of any linear and nonlinear long-term load combination. It can also be used to determine the long-term correlation structure between these loads in the form of the long-term correlation coefficients. They are essential part of the load combination procedures in design and strength evaluations as well as in the fatigue and reliability analysis of ship structures.The simulation method treats the non-stationary wave elevations during the ship’s entire life (long-term) as a sequence of different stationary Gaussian stochastic processes. It uses the rejection sampling technique for the sea state generation, depending on the ship’s current position and the season. Ship’s operational profile is then determined conditional on the current sea state and the ship’s position along its route. The sampling technique significantly reduces the number of sea state-operational profile combinations required for achieving the convergence of the long-term statistical properties of the loads. This technique can even be used in combination with the existing long-term methods in order to reduce the number of required weightings of the short-term CDFs. The simulation method does, however, rely on the assumption that the ship is a linear system, but no assumptions are needed regarding the short-term CDF of the load peaks.The load time series are simulated from the load spectra in each sea state, taking into account the effects of loading condition, heading, speed, seasonality, voluntary as well as involuntary speed reduction in severe sea states and the short-crested nature of the ocean waves. During the simulation procedure, special care has been given to maintaining the correct phase relation between all the loads. Therefore, time series of various load combinations, including the nonlinear ones, can be obtained and their correlation structure examined. The simulation time can be significantly reduced (to the order of minutes rather than hours and days) by introducing the seasonal variations of the ocean waves into a single voyage simulation. The estimate of the long-term correlation coefficient, obtained by simulating only a single voyage with the correct representation of seasonality, approaches the true correlation coefficient in probability. This method can be applied to any ship and any route, or multiple routes as long as the percentage of the ship’s total lifetime spent in each of them is known.A study has been conducted to investigate the effects of ship type, route and the longitudinal position of the loads on the values of the correlation coefficients between six different sectional loads; vertical, horizontal and twisting moments, as well as shear, horizontal and axial forces. Three ocean-going ship types have been considered; bulk carrier, containership and tanker, all navigating on one of the three busy ship routes; North America-Europe, Asia-North America and Asia-Europe. Finally, the correlation coefficient estimates have been calculated for five different positions along the ship’s length to investigate the longitudinal variation of the correlation coefficient. 相似文献
15.