首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
在建的沈阳地铁十号线塔湾街站—淮河街站区间折返线暗挖段与单线盾构区间净距仅5.45 m,暗挖大断面结构采用双侧壁导坑法施工,二者为小净距隧道。为研究小净距隧道施工之间的相互影响,本文针对先开挖折返线暗挖段与先施工单线盾构区间两种工况,选取了一典型断面作为计算模型,运用FLAC2D数值软件进行了数值模拟,对比两种施工顺序下结构受力、管线及盾构管片位移变化。结果表明,先行开挖暗挖段再施工单线盾构区间可最大限度减少二者之间的不利影响,保证地铁区间施工安全。  相似文献   

2.
北京地铁9号线工程丰台科技园站-科怡路站区间单线全长574 m,根据整体工筹,区间盾构从丰台科技园站盾构井下井组装始发掘进区间左线,穿越南四环后到达科怡路站南端接收,在科怡路站内调头后二次始发掘进区间右线,穿越南四环后回到丰台科技园站接收、解体、吊出,完成整个区间的盾构施工。  相似文献   

3.
苏州轨道交通1号线星港街站~会展中心站区间隧道长约2 350 m,其中约1 850 m下穿金鸡湖,是苏州地区第一条湖底盾构隧道,同时也是目前国内最长的湖底盾构隧道。该区间隧道所处的地层为含有微承压水的粉细砂地层,且隧道最小覆土厚度仅为7.4 m,隧道结构与防水设计难度高,施工风险大。结合该工程,对地铁区间长距离下穿水域的设计方案进行了探讨。  相似文献   

4.
土压平衡式盾构穿越江河施工实例   总被引:4,自引:3,他引:1  
土压平衡式盾构穿越江河施工时存在较多风险。本文通过一工程实例,分析施工中存在的问题。1工程概况广州地铁3号线(珠江新城站———赤岗塔站)盾构区间线路总长1291.921m,穿越珠江辅航道(江面宽80m)、珠江主航道(江面宽325m),隧道覆土厚度为7.3~20.8m,线间距为16.4~11.0m不等  相似文献   

5.
《铁道建筑技术》2011,(1):I0004-I0004
狮子洋隧道为高速铁路隧道,位于广深港客运专线东涌站——虎门站区间,全长10.8km,起讫里程DIK33+000-DIK43+800,采用4台Ф11.2m泥水平衡盾构“相向施工,地中对接,洞内解体”的施工思路。  相似文献   

6.
宁波市轨道交通2号线二期招宝山站前后2个区间分别采用圆形盾构和类矩形盾构施工,然而目前对于与类矩形盾构隧道衔接的车站型式研究较少。文章基于招宝山站两侧采用不同的盾构型式,研究提出地铁车站与不同盾构型式区间衔接方案及车站型式。  相似文献   

7.
地铁盾构区间施工测量的主要目的是按设计正确贯通.结合广州地铁六号线东湖站一黄花站盾构隧道施工实例,详细阐述地铁盾构区间施工测量管理机构、精度、程序、方法、盾构姿态控制等基本内容,验证了该方案在隧道施工中的有效性和可行性,并根据地铁盾构区间施工的特点总结经验,提出建议.  相似文献   

8.
小净距、长距离重叠盾构隧道设计、施工技术   总被引:1,自引:1,他引:0  
深圳市地铁3号线工程老街站—晒布站区间为最小净距1.6m、重叠及过渡段长度达740双延米的重叠盾构区间,区间设计过程中采用多种软件进行详细的理论分析,确定重叠盾构隧道"先下后上"的施工顺序,研究了上洞施工对下洞的影响范围、影响程度以及为降低和消除这种影响应采取的措施。重叠盾构隧道施工过程中,创造性的采用了液压轮式支撑台车,台车在下洞内随上洞盾构机的掘进同步向前移动,解决了传统重叠盾构隧道临时支撑方案安装和倒运困难的问题。在此对区间设计、施工进行总结,为今后车站、区间设计方案的拟定及重叠盾构隧道的设计、施工提供参考依据。  相似文献   

9.
杭州至海宁城际铁路余杭高铁站~许村镇站区间盾构隧道下穿杭州运营地铁1号线区间隧道,竖向净距仅3.2m。需要研究合理控制盾构掘进地层损失率,保障地铁运营区间隧道的沉降值在安全允许范围内。为此利用FLAC3D三维有限元软件计算分析了盾构隧道施工对运营地铁区间的沉降影响。研究结果表明沉降量与地层损失率密切相关,严格控制施工过程中的地层损失率在5‰以内,可减小对已运营地铁隧道变形的影响。施工监测数据结果表明,沉降分析及控制要求是安全合理的。  相似文献   

10.
结合广州地铁四号线的仑头~大学城站盾构区间及五号线的杨箕~珠江新城站盾构区间盾构施工实例.系统地介绍了工程地质分析在盾构施工中的重要指导性及如何进行工程地质分析和盾构机在特殊地层中掘进的应对措施。  相似文献   

11.
山区米轨旅游轨道交通线路线形设计对行车安全性、乘车舒适性有重要影响,为合理确定其线路线形设计标准,结合米轨快速旅游交通车线系统特点,利用线路参数分析方法对线路平纵断面关键参数进行分析.研究表明,(1)实设最大超高建议值取80 mm,欠超高允许值一般地段取45 mm,困难地段取65 mm.(2)时速120 km条件下,线...  相似文献   

12.
JQX900型下导梁式过隧道型架桥机主要用于200~350km铁路客运专线20m、24m、32m双线整孔预应力箱形混凝土梁的架设。在石太客运专线Z9标段,该架桥机经32—24m变跨作业,通过运梁车驮运实现桥间短途运输,并在穿越双线隧道后,于隧道口成功架设了3×24m双线整孔箱梁。此文从JQX900型架桥机隧道口架梁的施工工序入手,针对各单项工序进行了成本分析,以期为同类工程积累施工造价资料。  相似文献   

13.
对高速常导磁浮系统轨道梁结构型式及功能区各功能面的精度要求进行了分析,同时考虑到我国机加工能力和经济状况,对曲线地段定子面、导向面和滑行面分别采取了直线拟合和曲线拟合方法进行设计,研究工程技术条件对高速磁浮线路设计参数选取的影响,确定不同长度功能件和不同定子排列方式下平、竖圆曲线半径的合理取值范围,用不同曲率的导向面拟合平面圆曲线的允许半径范围和优势半径范围,以及满足扭转率要求的缓和曲线最小长度值。研究结果表明:分别采用6,3,2 m长的功能件和直线及半径为1550和790m的导向面,能够拟合的最小平面圆曲线半径分别为700,650和600 m,能够拟合的最小竖圆曲线半径分别为8250,4150和2750 m;缓和曲线最小长度可以达到40 m。  相似文献   

14.
为厘清中俄高速铁路有砟道床技术条件差异及其内在原因,通过对两国不同轨距高速铁路有砟道床设计规范及技术条款进行分析,针对莫喀高铁和京张高铁(350 km/h)运营要求,考虑到轨距、温度变化不同因素影响,所得主要结论如下:(1)道床砟肩宜采用无堆高形式,道床边坡宜采用1∶1.75,加强道床夯实。道床厚度宜采用35 cm,如在桥隧地段、路基基床表层采用沥青层、弹性轨枕可降低为30 cm;(2)结合欧洲高铁经验,道床纵向阻力不应小于14 kN/枕,横向阻力不应小于12 kN/枕,可满足时速350 km要求;(3)时速350 km及其以上必须进行飞砟设计和措施研究;(4)时速350 km须进行轨枕设计,可通过形状和尺寸方式。由于轨距不同,建议莫喀高铁轨枕长度采用2.7 m、京张高铁采用2.6 m。  相似文献   

15.
京津城际客运专线速度目标值的选择   总被引:5,自引:4,他引:1  
对京津城际客运专线的速度目标值进行研究,提出了线下250km/h,线上250km/h,及线下350km/h,线上分别为300、250、200km/h四种速度目标值方案,通过线路走向、社会经济效益及投资、客运专线及高速铁路发展趋势等方面的方案比选研究,指出线下350km/h、线上300km/h为最佳速度目标值方案。  相似文献   

16.
为研究高速列车过隧道时对接触网系统安全性的影响,采用数值模拟的方法,利用滑移网格技术,对不同编组的高速列车以350 km/h的速度分别通过单线隧道和双线隧道的过程进行仿真,通过监测吊柱位置处的气流速度和气体压力,得到隧道内活塞风特性;基于气动特性仿真结果,对接触线风振响应进行模拟仿真,得到隧道内接触线位移偏量范围。结果表明,列车编组越多,隧道断面越小,列车车速越大,形成的列车风速度越大,气动特性越显著;列车进入隧道入口瞬间,接触线有最大正向位移偏量为2.92 mm。  相似文献   

17.
现有高速铁路轨道长波不平顺静态检测主要采用矢距差法或简化矢距差法,存在与检测起点相关、含有里程相位差、基础变形时检测幅值偏大、与车体振动加速度匹配性较差等缺点。利用中点弦测法对轨道长波不平顺进行静态检测,通过对中点弦测法不同测弦长度有效测量波长范围和列车敏感波长分析,采用60 m测弦长度的中点弦测法最适合时速300~350 km运营期高速铁路;利用车辆-轨道动力学仿真分析和最小二乘法拟合相结合方法,提出运营期高速铁路300及350 km·h^-1速度下的轨道长波高低不平顺控制标准,并进行实例验证。结果表明:60 m弦中点弦测法既可保证轨道长波不平顺检测的准确性,又能很好地体现车体振动响应;时速300 km运营期高速铁路轨道长波高低不平顺3级控制标准建议值分别为9,15,21 mm;时速350 km分别为7,11,15 mm。  相似文献   

18.
本文以大秦线2亿t扩能改造为例,介绍其信号系统设计中对股道有效长度达到2800m的技术站进行的特殊处理,包括防护股道腰岔的信号机设置、进路办理方法和联锁处理。  相似文献   

19.
依托郑州航空港迎宾大道与郑渝高速铁路(郑万段)立交工程(51+48.5)m T形刚构箱梁转体施工,结合该桥上跨设计时速350km的郑万高铁、纵向长度不完全对称、转体重量达20000t,且桥面横向宽度由标准38.85 m渐变至47.47m的超宽异形结构形式,研究特殊工况下T构转体系统设置及安装、转体施工方法及工艺流程,重点阐述不等宽、不等跨的不对称转体结构施工精度及平衡度控制的应对措施,总结形成一套切实可行的特殊条件下上跨高铁不对称桥梁T构转体施工技术,为以后类似桥梁建设施工提供借鉴。  相似文献   

20.
由于车辆结构的差别,悬挂式单轨平面圆曲线参数与传统轮轨相差较大。为研究合理的圆曲线参数取值,本文运用行驶动力学理论,从乘客舒适度角度,对最小平面曲线半径和最小圆曲线长度等参数进行了计算研究,提出了相应的取值建议。当车辆最大偏转角不大于6. 843°,最大未被平衡离心加速度不大于0. 8 m/s~2,车速为80km/h时,最小平面曲线半径应不小于250 m。由于悬挂式单轨车辆的悬挂结构和参数与传统轮轨车辆存在较大区别,其最小圆曲线长度应不小于2V,是传统轮轨铁路的4倍。后续可在此研究成果基础上,利用车线耦合动力学理论,对乘坐舒适性、车线动力响应、车辆性能与线路参数之间的匹配关系等进行进一步研究,并综合考虑建设成本、运营维修等因素,合理确定各项参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号