首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
某微型客车在行驶过程中发动机高转速时驾驶室产生共鸣声,车身有严重的振动现象。NVH测试结果显示发动机右悬置支架Z向动刚度偏低。采用有限元分析方法对发动机右悬置进行动刚度分析,基于动力总成悬置系统刚度匹配原则和结构参数敏感性分析,并考虑装配及焊接工艺等因素,提出一个较为合理的改进方案。改进方案装车后NVH测试结果表明车内噪声明显降低,发动机转速为3 315 r/min时降了4.3 dB,3 671 r/min时降了10 dB,3 860r/min时降了4.5 dB,车身振动主观感觉亦有明显减弱。  相似文献   

2.
为解决某车型车内NVH异响问题,文章采取3挡节气门全开工况,发动机转速从1 000 r/min加速到4 500 r/min,对车内噪声进行测试。经对比分析发现,车内各位置在2 000~3 000 r/min存在均值为7.5 dB的峰值噪声,均由2阶噪声引起;通过分析进排气噪声对车内异响的贡献,得到车内异响是由进气噪声引起的。对产生异响的进气系统进行优化,在进气道上安装一个谐振腔,消除了车内噪声,整车车内NVH达到了较好的效果。车内噪声识别方法及与CAE结合的手段可以为相似问题提供很好的解决思路。  相似文献   

3.
本文针对某动力总成悬置系统NVH性能道路试验中,全油门缓加速工况受发动机频率激振影响,某悬置主动侧支架发生共振,导致在260Hz左右产生车内结构噪声的情况,采用hypermech-nastran有限元软件建立该悬置支架的有限元模型对其模态进行分析,并根据模态分析结果对该悬置支架设计优化。最后通过道路试验结果验证悬置支架结构设计优化的正确性,可使整车在全油门缓加速工况260Hz附近的振动和车内噪声明显降低。  相似文献   

4.
某轻卡加速至3600rpm时,车内出现明显的轰鸣声,严重影响驾乘舒适性。利用LMS数据采集系统对样车进行NVH试验,分析出进气噪声的突变和发动机悬置被动端支架的共振是引起车内轰鸣声的主要原因。通过优化进气系统谐振腔结构、提高发动机悬置支架的模态,车内噪声在3600rpm时降低了6dB(A)左右,轰鸣声消除,主观评价可以接受。  相似文献   

5.
NVH性能不仅是影响车辆驾乘舒适感的重要因素,而且是评价整车品质的重要指标之一。本文介绍了某SUV车型在四驱小油门加速工况下车内轰鸣问题的解决思路和优化方案,通过试验测试发现该车轰鸣是由发动机2阶激励经过悬置传递,引起风挡下横梁模态共振,进而放大车内2阶噪声。通过优化悬置刚度及横梁模态,从路径和响应上控制发动机激励、车内传递及放大,从而有效降低或消除车内轰鸣。  相似文献   

6.
传统燃油汽车,车内的发动机轰鸣噪声[1],是一直希望被降低或致消除的一种问题现象。文章以解决某SUV在NVH试验过程中,车内产生的发动机轰鸣现象为例,阐述了问题排查、原因分析、解决方案的思路过程。采用CAE仿真分析、NVH试验排查,确认轰鸣产生的原因为车身发动机悬置安装点的动刚度性能不足,明确以提升此点的车身动刚度[2]的方式来解决轰鸣问题,寻找影响悬置安装点动刚度的车身关键部位。随后制定解决方案、改制样车试验、NVH路试验证,最终从问题根源上,以最优方案、低成本的方案解决了问题。  相似文献   

7.
针对某轿车开发过程中出现的加速车内轰鸣声问题,通过ODS试验和模态试验,找出支撑梁和后悬置支架共振是造成加速车内轰鸣声的主要原因。在支撑梁上加装动力吸振器,同时提高后悬置支架的模态,然后将支撑梁和后悬置支架装到轿车上进行了试验。结果表明,在发动机转速为2 150 r/min和3 500 r/min时,驾驶员右耳的噪声处分别下降了2 dB和4 dB,加速车内轰鸣声得到了明显改善。  相似文献   

8.
陈明 《天津汽车》2010,(5):40-42
随着汽车产业的发展和进步,汽车的NVH性能,尤其是汽车的车内噪声性能越来越引起人们的重视。文章以GB/T18697—2002《汽车车内噪声测量方法》为理论基础,介绍了车内噪声测量的试验要求和测量技术要求,并对某轿车NVH改进前后的车内噪声性能进行对比分析,表明经过改进的轿车在匀速行驶和发动机扫描工况下,车内噪声降低,改进措施良好,从而得到了该轿车基于车内噪声的车辆NVH改进分析结果。  相似文献   

9.
悬置系统动刚度对整车NVH性能的影响和优化   总被引:1,自引:0,他引:1  
通过对某一车型的动力总成扭力臂悬置橡胶主簧结构和硬度的优化来降低悬置的动刚度以及对发动机悬置的解耦膜片降低橡胶硬度和解耦膜片与上流道板和惯性通道间隙的调整等方案来降低发动机悬置的动刚度等方法,阐述了对这一车型遇到的加速过程中驾驶室内轰鸣噪声问题的NVH优化方法和思路。此方法证明了通过调整悬置动刚度特性的手段对于解决此类NVH问题是比较快速和有效的,对解决实际工程上的NVH问题有一定指导意义。  相似文献   

10.
正悬置系统作为车辆动力总成的重要部件系统,在保证车内振动和噪声有效可控的同时,也是车辆可靠性和安全性的重要保障。本文以微型车为原型,建立发动机悬置数学模型,汽车在行驶过程中,发动机正常激励下,对可能影响车辆NVH性能的因素进行研究和优化。一、发动机悬置系统分类和结构组成1.橡胶悬置最初,动力总成不是经弹性元件,而是直接用螺栓刚性  相似文献   

11.
车内低频轰鸣声的控制,一直是汽车NVH领域研究的热点和难点。文章针对某车型的喇叭工作时引起的车内低频轰鸣声,运用传递路径分析和模态试验的方法,识别出车辆右前大灯为噪声源。通过对前大灯车身定位/安装孔位置的分析、优化和调整,有效避免了前大灯的安装模态偏移,从而完全消除了喇叭工作时引起的车内低频轰鸣声问题的复现。本研究对车内异响问题的激励源识别和问题解决提供了指导。  相似文献   

12.
针对某款乘用车小油门加速过程中车内噪声粗糙感明显的声品质问题,首先对噪声时域数据进行频谱特性分析,得到造成噪声粗糙感明显的原因是车内半阶次声压幅值调制。其次通过传递路径试验分析,确定车内半阶次激励源是发动机半阶次振动,主要传递路径是动力总成悬置。最后通过提高前围隔音量,优化悬置刚度及降低空调管隔振垫硬度,明显降低了车内噪声的半阶次特征,加速声品质得到有效改善。  相似文献   

13.
为解决某车型发动机怠速抖动剧烈造成车身出现裂纹的问题,对动力总成悬置系统的NVH(Noise,Vibration,Harshness,噪声、振动、声振粗糙度)性能进行研究分析。通过建立NVH数学模型从理论上对性能进行计算和分析,并进一步利用能量解藕法原理对悬置进行优化,以提高动力总成悬置的NVH性能。整车主观评价、客观评价和耐久试验表明优化后降低了整车振动,提高了乘坐舒适性,解决了车身裂纹的问题。  相似文献   

14.
汽车怠速工况车内噪声振动情况是影响整车NVH(噪声、振动和平顺性)水平的重要因素且影响乘车舒适性。以某款车型为例,对车内噪声源及传递路径进行分析,通过对悬置和冷却风扇等系统进行试验分析,确定了问题产生的主要原因,并提出了相应的优化方案,提出为保证悬置隔振和制冷效果,需对悬置系统和风扇转速合理匹配,同时提高转向柱的固有频率。验证表明车内轰鸣声消除,噪声及振动明显减小,效果良好,为解决同类问题提供了方法和思路。  相似文献   

15.
文章通过发动机液压悬置内部结构的高精度CAE模型,获得悬置受冲击时刻解耦膜的拍击力特性,进而通过分析异响和非异响悬置拍击力特性与试验异响的关联,确定了以拍击力判断异响的设计指标值、建立了液压悬置异响的正向设计方法。基于此方法的优化设计方案经试验验证异响较小,证明此方法准确可靠。  相似文献   

16.
本文中对加速车内噪声的粗糙感进行了分析和改进。首先通过对加速车内噪声频谱特性的分析,确定了半阶次噪声是引起车内噪声粗糙感的主要原因。接着对可能的传递路径进行了排查,结果表明车内的半阶次噪声主要来自于动力总成的振动,并通过变速器悬置侧支架传递到车内。最后采用了降低动力总成悬置刚度和提高悬置支架动刚度的方案,有效减小了车内噪声的粗糙感,提高了整车加速噪声品质。  相似文献   

17.
本文中通过试验研究某客车车内轰鸣声的产生原因和特性。首先,对车内轰鸣声和传动系扭振进行整车试验,然后通过阶次分析和频谱分析,确定车辆在高挡低速时的车内轰鸣声是由发动机2阶激励激起传动系的固有扭转振动引起的。传动系的固有频率在40~60Hz之间,随挡位的升高而降低,受离合器扭转刚度的影响较大。传动系的扭振通过发动机悬置、传动轴悬置和后悬架传到车内,其中发动机后悬置和传动轴悬置处传递的振动较大。  相似文献   

18.
描述了对某车型在高速换挡时发生的车内异响和踏板振动问题的研究及处理方法。结合异响与振动的发生机理及试验验证,对该问题进行了系统的研究,提出了可行的改善方案,最终通过优化传递路径的方式解决了该问题,以较低的成本达到了改善整车NVH品质的目的。  相似文献   

19.
针对某SUV AT车型起步工况"哼棱"异响问题,通过问题噪声频谱分析、模态/结构灵敏度验证等分析手段,系统的排查了异响问题的激励源、传递路径及振动体,得出异响产生机理是发动机轮系激励引起发动机悬置支架共振。借助有限元分析评估发动机悬置优化方案,通过优化悬置主簧结构,悬置支架模态避开轮系激励频率,解决起步异响问题。  相似文献   

20.
通过研究发现,发动机悬置系统对车辆的NVH表现影响比较大,文章通过调整整车悬置长度、悬置强度、正时罩盖(又称发动机前罩盖、正时链条盖)强度、悬置螺栓安装点等结构参数,对悬置系统进行仿真计算,提高发动机悬置系统的刚度,优化发动机NVH性能,减轻产品的重量,从而达到最优化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号