首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用Navier-Stokes方程对350 km/h高速动车组通过隧道的空气动力特性进行数值模拟,湍流模型采用标准κ-ε双方程模型.计算表明列车在隧道内运行时空气动力学响应发生了剧烈变化:表面最大正压出现在列车鼻端,为8 030 Pa,列车尾部过渡区产生最大负压-5 628 Pa;列车中车底部裙板最大负压为-5 763 Pa;列车阻力系数不断变化,最大值为1.048.列车过隧道时表面压力变化幅值远远超过明线运行,最大增加率达1 259%.计算结果不仅可以作为后续结构强度分析的基础,为车辆优化设计提供参考,同时也为轨道与隧道建筑设计提供了有价值的信息.  相似文献   

2.
高速列车通过隧道会引起较大的车内外压力波动,带来乘客舒适性问题和车体较大的气动疲劳载荷.与常规速度的列车比较,隧道压力波是高速列车车体设计和通风系统设计中所必须要考虑的问题.基于已研制的一维可压缩非定常不等熵流动和广义黎曼变量特征线数值计算程序,给出了CRH3高速列车单车通过隧道和两列车隧道交会过程中隧道内压力波和车外压力波的形成过程,分析了同一编组上不同车厢车内外压力和压差的变化规律,以及8节车辆和16节车辆两种编组长度对车内外压力和压差的影响特征,得出了会车压力波变化比单车压力波变化更加剧烈,建议今后以隧道内会车工况为研究内容,研究车内外压力和压差的变化,确定最恶劣的会车工况和车内外压力和压差,为列车设计提供依据.  相似文献   

3.
基于350 km·h-1中国标准动车组在大西高铁科学试验段的实车试验,结合压力保护阀工作状态,研究了列车通过试验段全程的车内外压力变化特征,分析了隧道长度、线路坡度、隧道群和列车速度对车内外压力变化的影响;针对EN 14067-5—2010中实车试验最大压力变化量的估算方法和TB/T 3250—2010中“整车车内可构成一个气压密封舱”的条文进行了实测数据验证,研究了整车气密效率的变化特征以及其与车内压力舒适性的关系。分析结果表明:EN 14067-5—2010中车外压力峰值计算方法得出的结果与实测数据存在较大差异,对其中列车和隧道壁面摩擦导致压力变化进行变量替代修正后的计算与实测差异明显减小;在压力保护阀关闭状态下,列车通过大坡度隧道后车内外长时间保持较大压力差;车厢内端门、风挡通过台门、司机室门的关闭几乎不存在气密性效果,整列车内贯通空间可视为一个气压密封舱;头车端和尾车端进入隧道引起的压力变化以及空气与列车和隧道壁面摩擦引起的压力变化与列车速度的平方成正比;整车气密效率随隧道长度的增大呈减小趋势,且其减小会带来车内人员耳部不适的问题。研究成果可为进一步认识高...  相似文献   

4.
为研究车体之间高度差对动力学性能的影响,针对8辆车编组的CRH380B型动车组,考虑典型的轮轨匹配关系,对无车高差及典型的6种车高差分别建立动力学仿真模型,针对典型的风速和限速,对车高差产生的空气动力学影响进行数值分析.同时,以空气动力学数据为输入,分析了车高差对列车系统动力学性能以及对动车组侧风运行安全性的影响.在15~30 m/s侧风作用下,不同的车体高度差工况对运行安全性指标的影响一般在10%以内.车辆动力学指标均满足相关标准要求,运行安全性指标具有一定的安全裕量.  相似文献   

5.
基于一维可压缩非定常不等熵流动模型,采用广义黎曼变量特征线法数值模拟隧道压力波.以国内某条地铁线路为背景,研究了地铁A型车以140 km/h恒速通过7 560 m隧道时,五种坡型、三种坡度对隧道压力的影响,给出隧道内压力最大值位置.结果表明:坡型对隧道压力的影响大于坡度;V型和W型坡隧道最大正压值随着坡度的增大而增大,人字坡反之;人字坡隧道最大负压值随着坡度的增大而增大,V型坡和W型坡反之.  相似文献   

6.
目前高速列车隧道空气动力学模型实验系统主要用于分析隧道内压力波的变化规律,难以对空气动力学效应进行完整的分析。针对这一局限性,从科特流(Couette)理论出发,提出了一种新型实验系统即旋转式高速列车-隧道模型实验系统,介绍了该系统的可行性、结构、实验原理及其特点。分析表明:该新型实验系统结构简单、功能完善、成本低、实验重复性好,适用于进行高速列车通过隧道时产生压力瞬变、微气压波、列车活塞风、行车阻力和气动噪声等一系列空气动力学实验,并能测量隧道内和列车隧道环形空间的气流速度场,对研究高速列车隧道空气动力学问题有重要意义。  相似文献   

7.
通过动模型试验与CFD计算,研究时速250 km/h的CRH3A型城际动车组单车通过隧道时列车表面以及隧道表面的压力变化.结果表明:列车单车过隧道时隧道中流场的压力变化主要是由列车车头刚进入隧道时形成的压缩波与车尾进入隧道时形成的膨胀波在隧道内往返传播、反射等影响造成;单列车通过净空面积80 m2的隧道时最大压力变化量ΔP为2.6 k Pa,出现在鼻尖点.列车过隧道时头尾部附近的隧道内流场呈现一定的三维变化过程.数值仿真分析与动模型试验结果基本吻合,可以相互验证.  相似文献   

8.
地铁列车空气制动系统仿真模型   总被引:1,自引:0,他引:1  
分析了地铁列车空气制动系统工作原理与构成,研究了容性、阻性和感性单元三类基本气动元件建模原理,根据相似性原理,通过AMESim软件建立了地铁列车空气制动系统仿真模型,介绍了空重车阀、EP单元、中继阀等部件建模过程,并对仿真参数进行了分析.研究了常用制动、紧急制动和阶段制动工况下制动缸压力与Cv压力变化特性,并进行了试验台对比验证.分析结果表明:在常用、紧急制动时,Cv压力比制动缸压力响应快,最大延时不超过0.5s,稳定时两者压力相等;紧急制动时制动缸压力上升至定压的时间小于1.5s,常用制动时小于2.2s;阶段制动时制动缸压力与Cv压力跟随性较好.试验中制动稳定后Cv压力比制动缸压力高约15 kPa,由中继阀内部橡胶件阻尼作用引起,该误差不影响中断阀正常使用.  相似文献   

9.
采用Artemis测试分析系统对隧道内运行的大连厂地铁车辆进行噪声测试,在地铁车辆内选择了六个测试点,通过对测试数据的分析、讨论.并对测试数据进行了分析,结果表明:地铁车辆运行时,车辆内噪声的最主要的噪声源是轮轨噪声.噪声级随着地铁车辆的速度的增加而增加.主频带一般都在315~5 000 Hz之间.低频率的声压级很小.研究地铁车辆内的噪声特性只需研究中高频声压级.  相似文献   

10.
为了预测地铁隧道内由活塞风效应引起的广告牌表面风荷载的时变特性,采用计算流体动力学(computational fluid dynamics,CFD)开展了活塞风三维非稳态流动模拟. 基于用户自定义函数(user-defined functions,UDF)定义了列车运行控制与动网格控制程序,搭建了精度更高的活塞风模拟方法,并结合以往的实验与仿真,验证了方法的合理性. 在此基础上根据实际隧道断面建立了全尺寸动网格模型,考虑了不同运行速度下由列车运动引起的流场变化,重点关注地铁隧道内不同位置广告牌表面的静压变化. 研究结果表明,列车经过广告牌时表面静压由正变负,速度增加时会导致广告牌表面的静压显著增大,对于80 km/h的工况静压幅值能超过500 Pa;对于部分以120 km/h运行的地铁,静压幅值超过1 kPa.   相似文献   

11.
动车组明线运行空气动力学数值仿真   总被引:1,自引:1,他引:0  
通过采用不可压缩粘性流体的N-S方程和K-ε双方程湍流模型,建立了带有车轮的200 km/h动车组模型,对其明线运行的外流场进行了空气动力学仿真.并对列车壁面附面层网格进行了细分,得出压力、速度的分布规律,针对网格划分对计算结果的影响进行了探讨.得出如下结论:列车的阻力系数为0.436,升力系数为0.014;此型200 km/h动车组车尾的安全避让距离为6 m;当加密附面层网格使y+从2200减小到55时,阻力系数提高15%.  相似文献   

12.
通过采用不可压缩粘性流体的N-S方程和K-ε双方程湍流模型,建立了带有车轮的200 km/h动车组模型,对其明线运行的外流场进行了空气动力学仿真.并对列车壁面附面层网格进行了细分,得出压力、速度的分布规律,针对网格划分对计算结果的影响进行了探讨.得出如下结论:列车的阻力系数为0.436,升力系数为0.014;此型200 km/h动车组车尾的安全避让距离为6 m;当加密附面层网格使y+从2200减小到55时,阻力系数提高15%.  相似文献   

13.
基于连续性方程Reynolds时均Navier-Stokes方程以及RNG k-ε湍动能模型方程对都市快轨列车隧道运行的空气动力流场进行数值计算.研究在以160 km/h隧道运行速度分别通过圆形和矩形隧道的工况下,从列车进入隧道直至整车完全驶出隧道的空气阻力以及车体表面压力变化情况,并对圆形及矩形隧道流场特性进行对比.计算结果表明:列车在矩形隧道和圆形隧道运行过程中的最大阻力分别达到15 458.5 N和13 829.3 N,最大表面压力分别达到4252.3 Pa和3 815.8 Pa.在两种隧道中运行的列车阻力变化规律及列车表面压力变化规律相同,矩形隧道运行时列车的最大阻力与圆形隧道相比增加了14.3%,表面最大压力增加了l3.8%.  相似文献   

14.
采用理论计算与试验验证相结合的方式对列车风区运行气动性能进行了研究.首先利用主流CFD分析计算方法,对挡风设施条件下的高速列车施加运行速度和横风风速以建立空气动力学仿真模型,对模型进行计算得到不同工况下列车的流场情况.其次,通过实车试验,实时获取列车风区运行时空气动力学性能(两侧压差)数据,以此分析列车在不同的线路条件和横风风速下两侧压差的变化规律.通过分析得出,列车在风区运行通过挡风设施过渡段时两侧压差发生突变,且伴随列车晃车现象影响行车安全.通过对多处过渡段区域重复试验和分析列车车体横向加速度变化情况,得出风区过渡段是列车运行薄弱环节的结论.实验数据对比了列车在过渡段工程补强前后的两侧压差情况,结论为进行工程补强后,两侧压差可减小30%~80%,其中最大减小为84.89%,工程补强效果可以明显的减小过渡段区域强风对列车的影响.  相似文献   

15.
将高速铁路车站引入城市地下,必然面临车站内的空气动力学问题。探讨了隧道长度对车站内瞬变压力等气动效应的影响规律,在分析了站内压力不利叠加时机的基础上,推导了与隧道长度有关的地下车站内瞬变压力不利叠加的判别式,并对不同隧道长度下列车通过地下车站进行了数值模拟,验证了理论分析结果,探讨了影响站内气动环境的不利隧道长度。  相似文献   

16.
强风中高速列车空气动力学性能   总被引:9,自引:0,他引:9  
基于三雏定常不可压缩Navier-Stokes方程、k-ε两方程湍流模型,采用有限体积法对速度为200 km·h-1的CRH-2动车组在强风环境下运行的空气动力学行为进行了数值模拟,分析了偏航角对列车整车及其各部分的流场结构和气动力的影响,研究了气动力的组成.研究发现:列车的流场结构非常复杂,侧风情况下列车的背风面区域和尾部区域都会产生漩涡,漩涡的产生与从列车表面的脱离的位置随偏航角的变化而变化;整车、头车、中间车和尾车的气动力大小以及组成均不相同;压力场与侧力、升力沿列车纵向的变化情况基本相同,且都比较复杂.分析结果表明:压力主要对侧力和升力影响较大,由于采用了流线型设计,阻力主要来自空气的粘性力,即摩擦力;侧风情况下头车的侧力和倾覆力矩要明显大于其他部分,此时头车的安全性降低.  相似文献   

17.
横风工况下高速动车组空调表面气动性能数值分析   总被引:1,自引:1,他引:0  
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,...  相似文献   

18.
为精确计算列车动荷载作用下软土地铁盾构隧道频域振动响应,考虑地基动刚度随应变频响的非线性变化,建立了车辆/轨道/隧道/软土地基的垂向耦合动力学模型,研究了不同轨道平顺等级下软土动刚度随应变频响非线性变化对地铁盾构隧道随机振动的影响规律.研究结果表明:随着轨道平顺性的恶化,地基动刚度随应变频响非线性的变化将引起地铁盾构隧道各频段内的振动加速度级出现明显的非均匀变化;轨道不平顺恶化后,软土地基动刚度的非线性将改变地铁盾构隧道频域振动幅值大小,且其对应频率会出现约有0.2 Hz的偏移,致使地铁盾构隧道频域振动能量出现重分布现象.   相似文献   

19.
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,4、8、12级横风时,空调进出口表面负压总值较无横风时分别提高约30%、174%、561%;随横风等级增加,头车空调所受横向力并无显著变化,而中,尾车空调所受横向力急剧增加,且方向与头车所受横向力相反.4、8、12级横风时,三车空调及导流罩所受横向力总值分别为78、532、2 499 N.  相似文献   

20.
中国高速铁路隧道气动效应研究进展   总被引:1,自引:1,他引:0  
论述了现场实车试验、数值仿真计算和室内模型试验等高速铁路隧道气动效应的研究方法,分析了隧道气动效应的影响因素,系统研究了动车组通过隧道及交会条件下车体内和隧道内瞬变压力与洞口微气压波随速度的变化规律、缓冲结构的设置条件、隧道附加阻力的计算方法、隧道内辅助设施所承受的气动荷载要求以及长大隧道远程测试控制技术和隧道内精确交会控制方法。研究结果表明:高速列车通过隧道引起的气动效应直接影响到列车运行的安全性、乘员舒适性以及隧道周边的环境,是高速铁路隧道设计中必须解决的关键技术问题;建议提出适合中国国情的隧道内复合型舒适度、微气压波标准,开展多孔吸能材料、洞口缓冲结构、减压竖井、横通道设计等减缓措施研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号