首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制动特性对列车纵向冲动的影响   总被引:1,自引:0,他引:1  
针对大秦线重载列车实际运用中出现的纵向冲动过大的问题,使用基于气体流动理论的空气制动特性仿真和基于刚体动力学的列车纵向动力学联合仿真方法,研究制动波传播的均匀性、制动波速、制动缸升压特性等制动系统特性对纵向冲动的影响.结果表明在制动波速不变条件下,制动波匀速传播与非匀速传播时列车纵向冲动水平基本一致;制动波速对列车车钩力影响显著,波速越高,车钩力越小;在列车制动能力不变的条件下,随着列车首尾车制动缸压强曲线开口度的收敛,纵向冲动明显降低,最大车钩力发生位置向列车后部移动.  相似文献   

2.
利用重载列车空气制动与纵向动力学联合仿真系统,仿真计算列车制动过程中的冲动过程,发现纵向冲动是由冲击作用和挤压作用共同形成,最大车钩力就是这两者中力较大的一个.如果最大车钩力是由冲击力产生,则最大车钩力发生在列车尾部,反之最大车钩力是挤压力时,最大车钩力发生在列车中部.车钩间隙对列车纵向冲击力和挤压力都有影响,车钩间隙对冲击力的影响比对挤压力影响更大,对后部车辆的影响更显著;车钩间隙越大,最大车钩力越大.闸瓦摩擦系数对挤压力影响较大,对冲击力影响较小;摩擦系数越大,挤压力越大,发生车位越向前移.  相似文献   

3.
重载列车纵向冲动机理及参数影响   总被引:1,自引:0,他引:1  
利用重载列车空气制动与纵向动力学联合仿真系统,仿真计算列车制动过程中的冲动过程,发现纵向冲动是由冲击作用和挤压作用共同形成,最大车钩力就是这两者中力较大的一个.如果最大车钩力是由冲击力产生,则最大车钩力发生在列车尾部,反之最大车钩力是挤压力时,最大车钩力发生在列车中部.车钩间隙对列车纵向冲击力和挤压力都有影响,车钩间隙...  相似文献   

4.
根据气体流动理论与多刚体动力学原理, 建立了带有列尾装置的列车空气制动系统与列车纵向动力学联合仿真模型, 计算了制动系统中空气流动瞬态数值解, 获得制动系统特性, 同步计算了列车纵向冲动。2万吨组合列车计算结果表明:全制动时安装列尾装置使最大车钩力降低54%, 列车纵向冲动明显降低;列尾装置减压量越大, 车钩力降低越明显, 目前列尾装置减压量固定为50kPa, 应根据线路经常使用的减压量确定更合理的值;列尾装置排气速度对车钩力影响较小;列尾装置滞后时间对车钩力影响微小;使用机车替代列尾装置, 在大减压量制动时, 车钩力将明显得到改善, 减压量越小, 机车与列尾装置作用效果越接近, 当机车减压50kPa制动时, 列尾装置与机车作用相同。  相似文献   

5.
本文以两万吨的重载列车为研究对象,通过UM建立两万吨重载组合列车的三维模型及列车的运行线路模型;然后在UM simulation中对重载列车进行条件约束,仿真分析得到两种不同编组的两万吨列车的纵向车钩力,与大秦线的两万吨重载列车的试验值基本相近;最后基于UM软件对两万吨重载列车在不同编组、不同长大坡道、不同制动波速的状况下分析,分析结果表明:1+2+1编组方式更适合于两万吨重载列车,且列车在下坡度运行时,下坡度越小,纵向冲动就越小;列车在上坡度运行时,上坡度越大,拉钩力越大,纵向冲动随之增大,列车上坡的坡度最大值为8%;另外,列车的制动波速越大,列车的纵向冲动就越小.  相似文献   

6.
针对重载列车纵向冲动问题,根据气体流动理论和机车动力制动特性,开发并完善了重载列车空气制动系统与纵向动力学联合同步仿真系统.对制动系统传动效率与机车电制动系统模型进行修正,细化了模型,提高了仿真系统精度.根据神华线路机车操纵控制指令,仿真列车编组为2+1时的停车与运行工况,将仿真结果与神华线路运行试验结果对比.计算结果表明:在空气制动停车与运行工况时,各车位列车管和制动缸压强试验与仿真结果基本一致;在停车与运行工况且施加机车制动电流的情况下,车钩力变化试验与仿真结果基本一致,最大车钩力试验与仿真误差在0.7%~14.2%之间,吻合程度较高.  相似文献   

7.
本文采用有限元法,考,虑了列车荷载下轨道阻力的作用,以及各种因素对纵向力的影响进行了 分析和计算,并通过室内模型试验,验证了理论计算的正确性。   相似文献   

8.
使用大容量缓冲器是重载列车主要特征,大容量缓冲器的大刚度特性使得重载列车运行中车钩力增加.调车工况是对缓冲器容量需求的主要工况,在无调车需求的重载线路中没有将缓冲器大容量特性发挥,反而引起列车运行过程中的过大车钩力.使用列车空气制动与纵向动力学联合仿真方法,针对神华铁路无调车作业的重载列车设计出新型缓冲器特性,仿真结果表明万吨列车在减压50、减压170 k Pa常用制动和紧急制动时车钩力分别降低11.5%、26.7%、43.8%,空气制动减压量越大,车钩力降低越明显.新缓冲器可以满足相对速度5.0 km/h的冲击需求.该研究为缓冲器开发提供了理论指导.  相似文献   

9.
两万吨列车纵向动力学性能预测   总被引:3,自引:0,他引:3  
开发了基于空气制动系统仿真的列车纵向动力学仿真程序.通过单车撞击试验获得缓冲器本构关系,通过仿真获得1+2+1编组两万吨列车制动特性.计算了两万吨列车车钩力分布特性,在受力特点上看,1+2+1编组列车在制动时可以看作中间分界的两段列车,每段列车前部受压,后部受拉.最大车钩力发生在列车的约1/8处,最大拉钩力发生在列车的约7/8处.后部机车滞后于前部机车制动,将使受压车辆数目增多,最大压钩力增加、发生位置后移,最大拉钩力变化不大.车钩间隙越大,车钩力越大.初速度越高,车钩力越小.  相似文献   

10.
两万吨列车纵向动力学性能预测   总被引:4,自引:2,他引:4  
开发了基于空气制动系统仿真的列车纵向动力学仿真程序.通过单车撞击试验获得缓冲器本构关系,通过仿真获得1+2+1编组两万吨列车制动特性.计算了两万吨列车车钩力分布特性,在受力特点上看,1+2+1编组列车在制动时可以看作中间分界的两段列车,每段列车前部受压,后部受拉.最大车钩力发生在列车的约1/8处,最大拉钩力发生在列车的约7/8处.后部机车滞后于前部机车制动,将使受压车辆数目增多,最大压钩力增加、发生位置后移,最大拉钩力变化不大.车钩间隙越大,车钩力越大.初速度越高,车钩力越小.  相似文献   

11.
本文将列车假设为一个离散质量系统,应用列车纵向动力学的原理和方法,对2×3700t 重载组合列车运行于各种线路纵断面条件下的列车纵向力进行了计算分析。通过分析认为,在我国既有铁路上组织开行重载组合列车是可行的。  相似文献   

12.
5000t级重载列车制动试验研究   总被引:1,自引:0,他引:1  
本文通过制动定试验台试验及研究。分析了GK阀占绝大多数的情况下,普遍开行5000t级重载列车制动方面的问题,讨论了长大列车初充气、再充气性能与机车供风量的关系,提出了在列车纵向动力学计算中制动缸缓解特性的公式;针对GK型三通阀在长大编组中缓解次序紊乱,首先提出用阶图分析列车缓解时间特性的方法,对缓解波速解释提出了一些新的概念。  相似文献   

13.
1990年5月在大秦线西段,进行了我国万吨级重载列车静置制动和线路运行试验。本文着重分析万吨列车在起动、长大下坡调速制动运行以及紧急制动工况下列车的纵向力及其规律,并与计算机模拟结果对比。同时也讨论了制动波速、长大下坡时列车充气能力及紧急制动距离等问题。这些研究结果为今后在我国开行万吨列车减小纵向冲动、防止断钩、保证安全运行提供了重要的科学依据。  相似文献   

14.
使用列车空气制动仿真方法获得空气制动系统特性, 通过列车动力学仿真方法分析了3万t列车在多机车不同步条件下紧急制动和常用制动时车钩力, 提出了大秦线3万t重载组合列车的可行性编组。分析了从控机车在各种滞后时间情况下, 列车常用和紧急制动的最大车钩力的变化特点。研究结果表明: 平道常用全制动工况下, 从控二机车滞后时间比从控一机车滞后时间对车钩力影响更大, 从控机车滞后于主控机车5 s时, 最大车钩力增加了80.2%;平道紧急制动工况下, 从控一机车滞后时间对车钩力影响更大, 从控机车滞后于主控机车5 s时, 最大车钩力增加了335.9%;从控机车滞后时间控制在4.1 s以内, 车钩力可以控制在许用范围内。  相似文献   

15.
利用空气制动和纵向动力学联合仿真程序,采用了KZ1空气制动系统和胶泥缓冲装置,建立了P160D快捷货车组成的快捷列车模型,计算紧急制动下不同制动缸充气时间对不同装载状态快捷列车纵向冲动的影响.结果表明,紧急制动距离随着制动缸充气时间延长而增大;满载、空载快捷列车和空重混编快捷列车中最大车钩力、最大加速度随着制动缸充气时间延长而减小;不同制动缸充气时间下,满载、空载快捷列车和空重混编快捷列车的纵向车钩力小,车辆瞬时加速度大,快捷货运列车运行中需对加速度进行控制.  相似文献   

16.
列车制动与道床阻力对钢轨纵向力的影响分析   总被引:1,自引:0,他引:1  
列车制动时在钢轨中的产生的纵向力将直接影响到无缝线路的稳定性。采用有限元单法和解释法从理论上对列车制动时在钢轨中引起的纵向力与道床阻力之间的关系进行了探讨,并用算例对这一问题进行了分析,得出。较大的道床纵向阻力可减少 车制动时引起的钢轨纵向位移和纵向力的结论。  相似文献   

17.
应用流体动力学理论, 建立了重载列车制动管路模型与分配阀模型, 求解了制动管路和边界点的动力学方程, 仿真计算了制动过程中的制动系统性能, 分析了列车主管和支管长度对制动系统性能的影响。分析结果表明: 当列车主管长度由13.24 m增大为17.24 m时, 在常用制动下, 列车管路减压时间增大了30.75%, 制动缸升压时间增大了20.45%, 主管长度对常用制动的影响要强于对紧急制动的影响; 当列车支管长度由0.50 m增大到5.00 m时, 在常用制动下, 列车管路减压时间增大了6.63%, 制动缸升压时间增大了5.22%, 支管长度对常用制动和紧急制动影响程度差别不大。列车制动管路长度增大降低了列车制动管路减压速度与制动缸升压速度; 列车主管长度对制动性能的影响要明显大于列车支管长度的影响, 车辆位置距机车越远影响越明显。  相似文献   

18.
使用空气制动系统与纵向动力学联合仿真系统,计算l辆HXD1机车+60辆载重C70车辆+1辆HXD1机车短编组列车加挂350 t落下孔车回送运行施行紧急制动的列车纵向冲动,分析350 t落下孔车编组位置、前后机车操纵同步性对回送列车的纵向动力学影响.仿真分析表明,主控机车和从控机车操作同步性能的好坏直接决定了整列车纵向动力学性能,350 t落下孔长大货物车的位于列车中部时列车最大车钩力增幅最小.  相似文献   

19.
基于多体动力学理论,构建了2万吨重载列车中部机车-货车三维动力学模型,分析了连挂车钩初始高差、车钩钩头摩擦因数等关键因素对中部机车跳钩的影响规律,探究了空制缓解与牵引工况下中部机车-货车连挂车钩分离的形成机理,并提出相应的防控对策。研究结果表明:中部机车-货车连挂车钩在压钩状态下能够保持稳定,但在钩缓系统由压缩状态转变为拉伸状态的过程中,机车电制力、牵引力将使连挂车钩产生垂向相对跳动;进入拉钩状态后,较大的初始高差和较差的钩头摩擦因数使得连挂车钩自锁力不足,导致车钩间垂向相对位移迅速增大;若机车垂向转角限值过大,车钩间垂向相对位移将进一步增大至300 mm以上,最终导致车钩分离现象的发生;当钩头摩擦因数和机车车钩垂向转角限值分别为0.08、8°时,空制缓解工况下发生车钩分离所需的最小初始高差、电制力施加比例分别为40 mm、40%,牵引工况下发生车钩分离所需的最小初始高差、牵引力施加比例分别为30 mm、50%;空制缓解工况下,当初始高差为50 mm、电制力施加比例为70%时,发生车钩分离所需的最小钩头摩擦因数、机车车钩垂向转角限值分别为0.09、6°;牵引工况下,当初始高差为50 mm、牵引力施加比例为100%时,发生车钩分离所需的最小钩头摩擦因数、机车车钩垂向转角限值分别为0.10、7°。可见,为有效抑制跳钩事故的发生,须严格限制连挂车钩间的初始高差,适当减小机车电制动力/牵引力,增大车钩钩头的摩擦因数,以及限制机车车钩的垂向最大转动角度。  相似文献   

20.
重载组合列车纵向动力学的实验研究及理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文介绍了1988年6月28日至7月6日在山海关一锦州间利角育有遥 控功能的便携式测试装置进行的6400t组合列车纵向动力学试验,并 根据实测的数据对本次试验的各种工况用列车动力学软件进行了对比计 算。在此基础上对锦州机务段提出的组合列车平稳操纵方法作了评价。 本文所作工作为重载组合列车的安全和合理操纵提供了理论依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号