共查询到20条相似文献,搜索用时 46 毫秒
1.
一种改进的神经网络及其在交通流量预测中的应用 总被引:1,自引:0,他引:1
针对BP神经网络运行的特点,提出用隔离小生境遗传算法优化传统的BP网络。实例证明,该神经网络的进化建模方法设计简单.模型性能评价全面合理,全局搜索效率较高,能有效地用于短时交通流量的预测。 相似文献
2.
由于路面破损形式的多种多样,造成路面破损分类成为一大难题,这极大的限制了路面破损自动检测的普及和发展,使得路面破损自动检测即使在发达国家普及得也不够理想。本文主要研究基于图象子块分布特性的路面破损识别算法,对比研究了小波神经网络和传统的BP神经网络在基于图象子块分布特性的路面破损识别。仿真结果显示,小波神经网络优于传统的BP神经网络。 相似文献
3.
4.
一种基于模糊模式识别方法的车型识别仪 总被引:3,自引:1,他引:3
车型识别对于收费道路的管理,交通信息统计等具有重要意义,本文介绍一种使用的地感线圈作传感器,基于模糊模式识别技术的车型识别方法。依据该方法研制出的AIF-20型车型识别仪,具有很强的学习能力,在使用时有较大的通用性和适应性。 相似文献
5.
自动驾驶汽车技术的日新月异,主要得益于深度学习和人工智能的进步。然而深度学习模型大多是在静态同分布数据集上进行训练,无法随着时间而适应或扩展其行为。针对这一问题,论文将持续学习模型运用于车辆目标识别领域进行研究。首先搭建可以使得算法流畅运行的环境,选定目标识别的原始图像数据集;在分析现有评估指标的基础上,选取适合于本次实验的评估指标,并采用卷积神经网络(CNN)、最接近类均值(NCM)、增量分类器与特征表示(iCaRL)三种持续学习算法对原始图像数据集进行学习训练与对比验证,通过实验验证了应用iCaRL算法使机器进行持续学习训练时,其精度和效率均优于其他两种方法。针对智能驾驶目标识别图像数据集不完善这一问题,构建了一个新的图像数据集,包含车辆、行人、交通标志及信号灯,将iCaRL算法应用于新建图像数据集进行研究,并在新建智能驾驶图像数据集上进行了训练与测试。结果表明,采用iCaRL算法能够较好地学习新建图像数据集,不会因为环境的改变而使得其性能发生大幅变化,测试结果良好,证明该方法可以在智能驾驶领域进行目标识别。 相似文献
6.
7.
为提高车型识别的准确率,提出信号处理的方法:首先采用快速小波变换抽取原始曲线的近似轮廓,从而削弱了噪声等细节信息的干扰,并实现2^n倍的数据压缩;其次利用五点三次滤波器对上一步获得的近似曲线进行平滑,使得离散信号更接近于真实的连续信号;在此基础上提出基于峰值时间差的强鲁棒性车长检测方法;最后,根据形态匹配的要求,采用Akima插值法进行信号尺度的归一化处理。车型识别试验采用观测点的实测数据,并将结果与其他文献进行比较,说明所提出的方法的有效性。 相似文献
8.
针对传统BP神经网络模型收敛速度慢的缺陷,对其进行改进,以提高收敛速度。经运用厦门港物流出口量的历史数据进行检验分析,给出BP神经网络仿真计算方法,其仿真结果与实际结果比较,具有较高的可信度。证明了改进后的模型加快了收敛速度,提高预测结果的准确性。 相似文献
9.
为了精准高效地确定斜拉桥目标状态索力,提出一种新型快速精准调索方法。该方法实施步骤为:计入结构的几何非线性效应,对斜拉索施加一定初张力确定计算初态;在计算初态基础上设定斜拉索的索力增量作为主调向量,通过逐次轮换主调向量进行有限元计算,相比计算初态确定关心截面内力或位移的增量效应矩阵及边界矩阵等参量;利用数值优化理论,建立约束条件及目标优化函数求解出满足要求的最优索力。以主跨518m的荆岳铁路公安长江特大斜拉桥为工程实例,对该桥成桥状态、施工过程子目标状态的索力进行优化并对施工监控误差进行修正。结果表明:优化后的结构状态均满足工程要求,该调索方法具有快速、高效、精准等优点,可推广至斜拉桥、拱桥等成桥状态和施工过程控制子目标状态的索力确定,并为施工监控索力调整等提供了一种新的解决途径。 相似文献
10.
近年来,社会经济持续高速的发展,人均汽车占有量迅速增加。为了避免车辆追尾等事故发生,结合道路环境下目标检测的难点及要求,文章选择基于卷积神经网络的YOLOv3算法,并针对YOLOv3中使用的k-means聚类算法初始时随机选择质心这一不稳定性以及原本的darknet53网络层数较低导致精度不是很高的问题,引用k-means++聚类算法对k-means聚类算法进行优化,并将darknet53替换成特征提取能力更强的resnet101,进行算法优化。实验结果显示优化后的算法mAP提高了12.2%,基本符合实际应用检测的精度要求。 相似文献
11.
针对路面裂缝图像识别结果容易存在孤立噪声和断续边缘的情况,提出了基于像素-裂缝子块双层连通性检测的图像自动识别算法,主要有4个部分:(1)基于自适应灰度拉伸的图像增强算法;(2)基于自适应大津法和八方向Sobel梯度信息的组合分割算法;(3)基于连通性检测的二值图像去噪算法;(4) 32×32裂缝子块识别和优化连接算法.然后,对5张3056×2048的路面破损图片进行裂缝识别,结果显示,该算法从像素和裂缝子块这2个层次进行连通性增强处理,可获得完整而连续的裂缝图像.最后,针对10张512×512的路面破损图片,对全局OTSU分割、八方向Sobel检测、Canny检测和本文算法进行测试,各算法综合性能指标F1值依次为62.46%、23.84%、10.45%和88.30%,准确率依次为83.45%,27.82%,17.83%和86.60%,召回率依次为56.89%,21.83%,8.89%和90.68%,体现了本文算法的优越性. 相似文献
12.
路面裂缝图像处理算法研究 总被引:6,自引:3,他引:6
为了避免传统人工视觉裂缝检测方法的耗力、耗时、不精确、影响交通、危险、花费高等缺点,提出了一种新的基于图像处理技术的路面裂缝类病害自动识别算法。识别分为两个步骤:首先以一个5×5的窗口为基准,在这个窗口中确定9种不同的掩膜模板,对有噪音的路面图像进行平滑和增强;然后基于阈值分割理论,采用最大类间、类内距离准则对图像进行阈值分割,提取图像上的裂缝特征。最后对采集的200幅路面裂缝图像进行了平滑和分割试验研究,和Robison等常用的平滑模板相比,对图像进行增强的同时较好地保护了裂缝边缘。在对平滑后的图像进行分割当中,和Hough变换、数学形态学等分割算法进行了对比研究,结果表明了该算法在精度、速度和可靠性方面具有一定的优势。 相似文献
13.
14.
道路标志图案识别方法研究 总被引:2,自引:0,他引:2
针对道路标志图案自动识别,以转弯道路标志图案为例,通过颜色空间变换,将道路标志图像的RGB量值转换为H(hue,色度)S(saturation,饱和度)I(Intensity,亮度)量值,利用H、I作为分类器的特征值,设计了欧式距离分类器,实现道路标志背景颜色的识别。采用固定阈值法分割道路标志图像的图案区域,并对分割后的区域进行Daubech ies-4正交小波变换,利用小波变换系数的能量值和方差比值作为道路标志图案的纹理特征。最后,设计了BP神经网络道路标志图案分类器,实现道路标志图案的自动识别。实验结果表明,文中提出的方法可行。 相似文献
15.
有效、及时地收集路面损坏数据是进行路面维修管理的基础.文章阐述了一种路面损坏状况的自动图像识别方法.该方法基于CCD摄像机采集到的图像,进行矢量化处理,可进行裂缝类型的区分与严重程度的辨别. 相似文献
16.
17.
路面裂缝自动检测对于路面养护管理、路面性能评价与预测、路面材料和结构设计具有重要的实用价值,但快速、准确、全面且稳定地识别路面裂缝一直是个难题.为此,对路面裂缝自动检测研究现状进行综述,包括以图像增强和去噪为目的的预处理方法,基于阈值分割、边缘检测和种子生长的空间域识别算法,以小波变换为代表的频域识别算法,基于有监督学习的识别算法及其他裂缝识别方法;指出既有裂缝识别算法存在易受光照和油污等因素的影响、裂缝识别图像连续性差和识别速度和精度较低等不足.最后,提出综合考虑边界和区域特征消除纹理和噪声干扰、基于局部和全局信息设计优化识别算法和基于三维图像进行裂缝识别等研究展望,为裂缝自动识别算法的改进提供参考. 相似文献
18.
19.
图像景深和天空亮度值的求取是图像复原方法去雾的核心问题,但目前的去雾算法都是基于一定的假设条件来求取这2个值的,对于色彩单调、天空区域较大的内河图像去雾效果不理想。通过对内河航道视频图像的研究,提出将直方图多峰均值法和位平面分解法相结合的方式来求得天空亮度值并分割天空区域;采用分区域的景深计算方法求得图像任意一点的景深值。然后基于大气散射模型,完成内河雾天单幅图像的去雾处理。为了客观评价去雾后图像的质量,从图像的可见边数目比、平均梯度比和图像熵值三方面进行了去雾效果的比较。实验证明,该算法对内河航道图像有良好的去雾效果。 相似文献
20.
该文简要分析了我国交通事故的严重态势和交通事故发生的原因,提出了交通事故预警的计算模型-BMOM方法,并结合实例进行了分析。 相似文献