首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
利用LS-DYNA软件建立列车前端吸能结构的有限元模型,通过仿真分析对试验台车吸能结构进行优化以及试件材料选择;通过受力对比分析确定整车模型与试验台车模型对于吸收结构碰撞试验的一致性。台车吸能结构碰撞试验结果及其分析表明:利用台车吸能结构碰撞试验可以替代整车碰撞试验,用于验证列车前端吸能结构设计的合理性。采用仿真分析与台车试验相结合的方法,对列车端部吸能结构的耐碰撞性能进行验证,可以有效地压缩设计与试验的成本和周期。  相似文献   

2.
根据城际动车组车辆参数,介绍了防爬吸能装置设计结构及吸能原理。通过列车碰撞仿真计算和分析,验证了防爬吸能装置在列车碰撞过程中具有良好的防爬性和吸能性,对列车被动安全有着积极的防护作用。  相似文献   

3.
基于显式有限元的高速列车吸能装置吸能原理研究   总被引:1,自引:0,他引:1  
吸能装置是提高高速列车耐碰撞性能的关键部件。首先阐述了金属切削数值仿真的关键技术,包括材料的本构模型、切屑与工件的分离、切屑与刀具的接触和摩擦等。然后利用显式有限元仿真了薄壁结构被轴向切削时刀具的前角、切屑的厚度和宽度等对其吸能特性的影响。提出薄壁结构轴向切削吸能和轴向压缩吸能的组合作为吸能装置的吸能原理。分析结果表明,该吸能原理是一种非常理想的碰撞能量耗散模式。  相似文献   

4.
铁道客车大变形碰撞仿真研究   总被引:10,自引:1,他引:9  
利用数值仿真技术对铁道客车进行大变形碰撞研究。通过设置不同部分壳体单元的不同厚度,巧妙地处理了车体钢骨架与车体侧墙板及其他各种板件的焊接关系。根据仿真结果分析车身主要吸能部件的变形规律,改进牵引缓冲梁的结构,提高其吸收能量的性能。建立车与车的正撞模型,计算表明初速度相对大的车可能爬到初速度相对小的车上。建立斜角碰撞模型,指出为了减少列车脱轨后的严重伤害,应加强铁道安全护栏的研究。假人模型中的有关头部伤害指标和大腿伤害指标的计算结果表明,列车碰撞及其乘员二次碰撞是导致乘客伤害的关键原因。利用PAM CRASH的并行处理技术,进行了600万自由度有限元模型的25B铁道客车之间的碰撞分析。  相似文献   

5.
城轨车辆钩缓装置配置与头车前端底架的碰撞吸能区设计   总被引:1,自引:0,他引:1  
为了提高车辆的被动安全性,需提高车辆前端结构的防撞能力,城轨车辆需满足2列空载列车相对速度25km/h的碰撞要求。主要阐述如何合理配置车辆钩缓装置中的前3级吸能结构能量,并通过ISIGHT软件,优化第4级吸能结构,即头车前端底架的碰撞吸能区,使车辆4级吸能结构能够合理有序变形,吸收更多能量。  相似文献   

6.
为验证某电力机车车体的耐碰撞性能,建立了机车车体非线性有限元碰撞仿真力学模型,并分别对安装和不安装吸能装置的机车车体结构在15,20,36 km/h速度下的碰撞过程进行仿真分析。结果表明,该机车安装吸能装置后,其耐撞性明显提高,能满足设定的各项要求。安装吸能装置后,该机车车体司机室结构不损伤的临界速度为20 km/h。  相似文献   

7.
刘莉  许喆  高峰 《机车电传动》2020,(1):139-143
为了提高城轨车辆司机室端部主吸能结构的吸能性能,采用仿真分析的方法对底架端梁和吸能结构的板材厚度进行了优化设计。考虑优化部位对吸能量的影响,建立某城轨车辆司机室车与司机室车以相对速度25 km/h的正撞模型,通过碰撞分析计算得到了结构优化前后的吸能量及车体不发生压溃的最大撞击速度。研究结果表明:提高底架端梁结构的刚度,减小主吸能结构的板材厚度能够满足司机室端部吸能系统的顺序可控变形规律,其吸能性能也得到提升,为主吸能结构的优化设计提供了理论参考。  相似文献   

8.
高速列车车体端部吸能结构研究   总被引:1,自引:0,他引:1  
针对高速列车速度高、动能大的特点,设计了车体被动安全防护的特殊端部吸能结构,并通过非线性有限元软件LS-DYNA,研究高速列车头车司机室端两级吸能装置以及车体尾端弱刚度结构的耐碰撞性能,重点考察其与刚性强撞击时的界面力、变形以及能量吸收能力。计算结果表明两级吸能装置变形有序,具备约3.4 MJ的能量吸收能力,可有效保护司机室结构;车体尾端弱刚度区具备6.5 MJ的能量吸收能力,可有效保护乘客区结构的安全。将上述结构应用在某型高速动车组车体并按照欧标EN15227进行36 km/h对撞工况的验证,司机室头部吸能结构变形合理,列车未发生爬车现象,司机室及客室结构完整,头车平均加速度为4.4g,满足标准要求。  相似文献   

9.
介绍现代有轨电车车端系统的组成及主要参数,以某有轨电车为例,从竖曲线、平面曲线、吸能行程、位置关系几个方面对车端系统各参数进行校验和优化。根据EN 15227-2008+A1-2010《铁路应用设施-铁路车辆车身防撞性要求》,计算列车以15km/h速度与1列相同编组的静止列车正面碰撞,以及列车以25km/h速度呈45°角撞击1个3t障碍物的2种碰撞情景下,列车碰撞过程中车体内能及动能、车辆速度及加速度等参数变化情况,验证车体的耐碰撞性和结构完整性,并对碰撞计算存在的不足进行探讨,提出建议。  相似文献   

10.
耐冲击地铁车辆设计及整车碰撞研究   总被引:4,自引:0,他引:4  
针对地铁车辆自身特点进行耐冲击地铁车辆吸能结构设计,提出了耐冲击地铁车辆设计理念,将该地铁头车在撞击过程中的能量吸收过程设计为4级:第1级为车钩缓冲装置缓冲器,第2级为缓冲装置中的压渍变形管,第3级为车钩剪切螺栓,第4级为位于头车前端底架的吸能结构和防爬器等可变形结构.并对地铁中耐冲击车体进行了研究,在车体结构中于指定部位设计大塑性变形结构,即设置专用吸能结构;建立了该地铁头车的车体碰撞模型,进行了各碰撞工况的数值仿真.研究结果表明:在撞击过程中吸能结构从预期部位开始发生稳定有序的塑性变形,车体客室仅发生弹性变形,大部分冲击动能(超过80%)转化为吸能结构的塑性变形,表明该车具有很好的耐冲击效果.  相似文献   

11.
设计了耐冲击吸能车体,其前端司机室控制台前端和尾端为塑性大变形区域,中间载客区为弹性小变形区域。建立轻轨列车的等效简化模型。对实际模型和简化模型在同样工况下进行了撞击计算,结果显示等效模型和简化模型的变形过程相似,力—位移曲线也基本相同。在简化的轻轨车模型基础上,模拟6辆编组的轻轨列车以25km.h-1速度撞击一列静止的轻轨列车,得到各辆车的动力学响应。计算结果显示,车辆与车辆之间发生了多体耦合撞击,每辆车都产生了塑性变形,其中头车前端塑性变形较大。  相似文献   

12.
新型无人驾驶地铁列车为现代轨道交通智能列车的代表,对列车运行安全性,尤其是对列车的碰撞安全性具有较高的要求,是车辆设计的重点和难点。以新型无人驾驶地铁列车为研究载体,以列车耐撞性为研究目标,基于EN15227:2008标准要求,采用数值仿真分析方法对新型无人驾驶地铁列车耐撞性进行研究评估。研究结论为:列车在初始速度25 km/h下与一列静止列车发生碰撞时,车钩缓冲器、压溃管及防爬吸能装置可以将碰撞动能全部吸收,能够较好地缓冲撞击;列车爬车指标、乘员生存空间指标及减速度指标均满足标准要求,能够保护乘客安全。  相似文献   

13.
针对桥梁防护墙防护能力研究较为匮乏的现状,基于有限元理论,运用Hypermesh软件建立有砟无砟轨道桥梁上动车组头车与防护墙碰撞的有限元模型,采用数值仿真方法对动车组头车碰撞防护墙过程进行分析和研究,获得不同速度和不同冲角碰撞工况下防护墙的受力与变形及列车运行轨迹的变化。研究结果表明:动车组头车以较低速度、较小冲角碰撞防护墙时,防护墙受损破坏程度较轻;当碰撞速度较高、冲角较大时,防护墙受损程度较重,头车有轻微爬墙现象。加高防护墙后建立相关工况下的碰撞模型进行仿真计算,通过分析其碰撞过程和碰撞力、头车偏转角及速度随时间的变化情况,发现增高后的防护墙能有效抑制列车爬墙现象,列车运行稳定性较好。  相似文献   

14.
在研究耐碰撞车辆安全性设计思路和设计规范的基础上,以天津津滨城市轨道车辆的头车为例,设计了不同碰撞速度下的多级吸能系统及其布置方案。仿真计算结果表明新设计的耐碰撞车体结构能够满足不同碰撞速度下稳定有序变形的设计要求。  相似文献   

15.
轨道车辆碰撞能量吸收装置原理及结构设计(待续)   总被引:7,自引:0,他引:7  
介绍了轨道车辆碰撞能量吸收装置的设计原理,分析了英国铁路(BR)防撞车和欧洲铁路研究组织(ORE)入撞车的结构设计情况,提出了碰撞能量吸收装置的基本要求。  相似文献   

16.
丁晨  赵洪伦 《铁道车辆》2011,49(1):1-4,48
应用耐碰撞系统设计思想,提出了采用新型吸能结构和填充材料的排障器设计方案,并通过碰撞仿真分析对设计方案进行了比较。基于LS-DYNA的仿真结果表明,该新型排障器优选方案具有良好的吸能和缓冲碰撞的安全性能。  相似文献   

17.
在对国内外相关规范关于桥梁抗倾覆稳定性计算方法与脱轨荷载调查分析的基础上,计算了U形梁在保持抗倾覆稳定性下的最大侧向碰撞荷载,对比了欧洲规范EN 1991-1-7:2006和TB 10002-2017《铁路桥涵设计规范》中U形梁的抗倾覆稳定性计算式。基于有限元分析方法对腹板侧向承载力进行仿真分析,明确了U形梁在侧向撞击作用下的失效模式。研究结果表明:2种规范计算得到的最大侧向碰撞荷载有所差异,但均大于3.5 MN;列车脱轨情况下的脱轨荷载模式和作用位置对U形梁抗倾覆稳定性的影响显著;U形梁跨中区域加载侧的底板和腹板在侧向位移加载模式下发生了大面积塑性损伤,腹板还发生了明显的侧向变形;U形梁在侧向撞击作用下的失效模式表现为腹板侧向承载力达到极限而发生破坏,通过拟静力分析确定U形梁腹板侧向极限承载力为1.5 MN,结构整体不会倾覆失稳。在设计和使用阶段应对U形梁腹板的损伤和承载力评估予以重点关注。  相似文献   

18.
地铁头车车体耐撞性仿真分析   总被引:2,自引:0,他引:2  
在分析国内外有关研究现状的基础上,根据国外有关轨道车辆耐撞性评估的准则、标准,提出评估地铁头车车体耐撞性的碰撞场景设计与条件,即:满载车辆以25km/h的初速度对撞同类型保持静止状态的头车时,车体及吸能结构所吸收的碰撞能量不小于1MJ,头车车体变形不大于100mm。同时,建立某型地铁头车车体对撞有限元模型,处理接触问题及边界条件,实现240ms碰撞过程的数值仿真,并分析车体的速度、加速度、变形、能量的变化趋势。通过对关键参数的仿真分析,评估地铁头车车体的耐撞性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号