首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.  相似文献   

2.
The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix. The matrix for the tool designing was made for three types of tools, based on three types of probes, with three levels each for defining the shoulder surface type and probe profile geometries. Then, the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength, weld cross section area, grain size of weld and grain size of thermo-mechanically affected zone. These effects were modeled using multiple and response surface regression analysis. The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics.  相似文献   

3.
Ship resistance issues are related to fuel economy, speed, and cost efficiency. Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction. In this paper, the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR) techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB). A model with the following dimensions was constructed: length L = 2000 mm, breadth B = 521.60 mm, and draft T = 52.50 mm.The ship model was towed using standard towing tank experimental parameters. The speed was varied over the Froude number range 0.11–0.31. The air layer flow rate was varied at 80, 85, and 90 standard liters per minute(SLPM) and the microbubble injection coefficient over the range 0.20–0.60. The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%. Based on the characteristics of the SPB, which operates at low speed, the optimum air lubrication type to reduce resistance in this instance is ALDR.  相似文献   

4.
In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.  相似文献   

5.
采用遗传算法进行球鼻艏优化的流体动力计算(英文)   总被引:1,自引:0,他引:1  
Computational fluid dynamics(CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of "total resistance".Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.  相似文献   

6.
The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.  相似文献   

7.
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint(highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat(FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6%-9%.  相似文献   

8.
大型加强板结构焊接顺序的效果研究(英文)   总被引:1,自引:0,他引:1  
Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.  相似文献   

9.
Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.  相似文献   

10.
In order to assess the possible collision effect, a numerical simulation for the upper module and spar platlbrm docking at the speed of 0.2 m/s was conducted by using the software ANSYS/LS-DYNA, and the time history of the collision force, energy absorption and structural defonamtion during the collision was described. The purpose was to ensure that the platlbrm was safely put into operation. Furthermore, this paper analyzes different initial velocities and angles on the Von Mises stress and collision resultant force during the docking collision. The results of this paper showed that the docking could be conducted with higher security. The data in this paper can provide useful references for the determination of the upper module's offshore hoisting scheme and practical construction by contrasting the numerical simulation results of the parameters on the docking collision.  相似文献   

11.
采用复合搅拌摩擦点焊的方法对2mm LF21铝合金薄板进行焊接,测试了不同旋转速度下的焊接接头的抗剪力,并观察和分析了点焊接头的成形及微观组织。结果表明:当其他参数一定时,接头的抗剪力在旋转速度为1200 r/m in时达到最大值3.47 kN,同时得到表面光亮、成形美观的焊点;显微试验结果表明复合搅拌摩擦点焊接头塑性环区和热机械影响区均发生了强烈的金属塑性流动,其中塑性环区的晶粒尺寸细小、组织致密。  相似文献   

12.
搅拌摩擦焊在船用铝合金结构中的应用   总被引:1,自引:0,他引:1  
介绍搅拌摩擦焊的原理及特点,根据铝合金作为造船材料的优点,分析船用铝合金采用搅拌摩擦焊的优势,探讨铝合金搅拌摩擦焊在船体结构中的应用,指出今后搅拌摩擦焊技术的研究重点将是对搅拌头进行改进与创新。  相似文献   

13.
针对14 mm厚的LF21铝合金,采用搅拌摩擦焊进行焊接,焊后对接头的宏观形貌、微观组织和接头不同区域的显微硬度进行分析.实验结果表明:在焊接速度v为200mm*min-1,转速ω为1200rad*min-1时,焊缝成型较美观,焊缝内部无空洞、裂纹等缺陷.显微组织观察发现焊核区的组织为再结晶等轴晶粒,晶粒明显细化;热机械影响区组织由原始母材细纤维组织转变为具有一定弧度的弯曲粗纤维组织;热影响区范围较窄,晶粒与母材相似,但出现了晶粒粗化现象.显微硬度实验发现,焊缝中层和上层的显微硬度较高,而下层较低.  相似文献   

14.
搅拌摩擦焊是英国焊接研究所在20世纪90年代发明的一种新型焊接技术,它是一种固相连接技术,即可以通过不融化母材和焊材而进行联结。搅拌摩擦焊克服了以往熔焊的诸如气孔、裂纹、变形等缺点,连接工艺简单,接头质量好,有较好的工艺适应性。现已开始应用在船舶、航天、高速火车等领域。在造船领域,搅拌摩擦焊主要用于制造带筋板,国内已有船厂采用了此种技术。本文主要介绍搅拌摩擦焊的原理、特点、应用情况及目前使用中存在的问题。  相似文献   

15.
随着铝合金材料的普及使用,作为先进数字化检测手段的相控阵超声波检测(Phased Array Ultrasonic Testing, PAUT)技术应用备受关注。近年来,在先进超声波技术发展和应用需求结合下,陆续开展的相关试验研究为铝合金搅拌摩擦焊焊缝PAUT技术提供指导和规范引领,并形成相关行业应用标准。铝合金气体保护焊PAUT技术的应用需求逐渐显现,但相关研究和标准尚在起步阶段。梳理国内铝合金焊缝PAUT技术应用现状,可为推动铝合金焊缝PAUT技术研究、扩展应用场景提供技术基础。  相似文献   

16.
微波扩频通信具有网络质量好、建设成本低的优势。在长江水上专网采用微波扩频通信的方案切实可行。  相似文献   

17.
铝合金表面状态对搅拌摩擦焊接头组织和性能的影响   总被引:1,自引:0,他引:1  
研究了铝合金表面状态对搅拌摩擦焊焊接接头组织和性能的影响。试验结果表明:试板表面油污的存在使得焊接接头强度下降为母材的60%左右,同时显著降低接头的塑性;试板表面的氧化膜和油污还会造成焊核区及焊缝前进侧的残余间混结合线缺陷。对焊接接头拉伸断口进行扫描电镜观察发现:拉伸试样的断口中存在油污和A l2O3的聚集物,这些聚集物会成为拉伸时的裂纹源。断口和力学性能综合分析表明:铝合金表面的油污和氧化膜都会降低搅拌摩擦焊接头的强度和塑性。  相似文献   

18.
复合搅拌摩擦点焊接头的金属流动行为   总被引:2,自引:1,他引:1  
研究了LF21铝合金在复合搅拌摩擦点焊时焊点金属的流动行为,并将复合搅拌摩擦点焊与直插式搅拌摩擦点焊的接头性能进行了对比。研究结果表明:LF21铝合金的复合搅拌摩擦点焊焊点的金相组织存在4个区域——母材区、热机械影响区、热影响区、塑性环区;与直插式搅拌摩擦点焊不同的是,在塑性环的边上形成了一个由复合搅拌形成的"耳朵形"区域,并且左右不对称,因此增加了塑性环的宽度;热机械影响区域与热影响区交接面的金属形成向上流动的塑性流,热影响区两侧金属的流动具有对称性,金属的流动行为类似于羽毛状;复合搅拌摩擦点焊焊点的剪切力比直插式搅拌摩擦点焊的提高了40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号