首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 527 毫秒
1.
为提高高速列车运行过程中的气动性能,降低运行成本,针对受电弓舱气动结构外形,利用计算流体力学原理对矩形、椭圆形、胶囊形和六边形4种内置式受电弓舱结构进行数值模拟计算,计算得到矩形内置式受电弓舱结构能够最大程度改善受电弓气动阻力与气动升力性能。在此基础上,以矩形内置式受电弓舱主要结构参数为优化设计变量,受电弓气动阻力和气动升力为优化目标,选取最优拉丁超立方设计的试验设计方法建立响应面近似模型,采用第二代非劣排序的遗传算法(Non-dominated sorting genetic algorithm-Ⅱ, NSGA-Ⅱ),对矩形内置式受电弓舱气动结构外形进行多目标优化设计。结果表明:完成320次优化迭代计算后得到一系列Pareto优化结果,优化后的模型可使受电弓气动阻力最多降低5.9%,受电弓气动升力最多降低2.5%,与原始模型相比,受电弓舱倾角增大,其余设计变量变化不大;高速列车运行时,受电弓舱倾角越大越有利于改善受电弓部位气动阻力和升力性能。  相似文献   

2.
针对高速列车受电弓气动噪声声源组成的复杂性和各部件对总噪声的贡献量问题,基于Lighthill声学理论,采用三维、宽频带噪声源模型,LES大涡模拟和FW-H声学模型对DSA380型高速受电弓气动噪声进行数值模拟,分析该型受电弓的主要气动噪声声源特性及各部件对受电弓远场气动噪声的贡献量大小,并提出降噪改进意见。研究结果表明:受电弓主要噪声源为弓头、绝缘子、底架、下臂杆等组件的迎风侧位置,其中碳滑板、平衡臂、弓头支架、底架、绝缘子、下臂杆等部件对远场气动噪声声源的贡献量最多;受电弓气动噪声是宽频噪声,且主要能量集中在1602 500Hz,存在主频305、608、913Hz(350km/h运行),且各阶主频与运行速度均满足线性关系;相邻2测点满足2倍关系的横向受声点声压级,其衰减幅度大约为6dBA,且与横向距离的对数成线性关系;垂向受声点的声压级最大值出现在距地面高度7.192m处;运行速度不改变受电弓的偶极子噪声指向特性(垂向平面在θ=0°、纵向平面在θ=120°、横向平面在θ=90°处的噪声指向性明显),只改变其幅值,随着运行速度的增大其增加幅度越小;受电弓以开口方式运行的气动噪声性能较闭口方式好,降噪效果明显。  相似文献   

3.
采用计算流体力学方法对受电弓下沉的安装方式进行数值模拟,分析受电弓安装平台不同高度下沉和不同轮廓外形对高速列车气动阻力特性的影响。研究结果表明:受电弓适当下沉后,受电弓下部底座、绝缘子迎风面正压降低,背风面负压减小,使得受电弓前后压力差减小,受电弓的气动阻力降低;当下沉高度为450 mm时,受电弓气动阻力减小52.92%,整车阻力也下降6.19%;受电弓安装平台的轮廓外形细微地改变了受电弓下部的压力分布,进而影响受电弓的气动阻力;不同轮廓外形下,受电弓的气动阻力最大相差为20.78%,整车阻力相差1.68%,综合来看,矩形安装平台的减阻效果最为显著。  相似文献   

4.
针对高速列车行驶过程中受电弓区域产生的气动噪声问题,提出一种基于射流的主动降噪新方法。通过建立1∶30缩比受电弓空腔射流降噪装置模型,探究不同射流速度对空腔噪声的抑制效果。采用LES湍流模型和FW-H声学模型对受电弓空腔流场和声场进行求解,分析不同射流速度对湍动能、涡量、表面声功率级及远场噪声值的影响,得出来流马赫数M=0.117时的最优射流速度为40 m/s;在最优射速下,受电弓空腔表面最大声功率级降低了4.503 dB,远场噪声值在2.5 m接收点处降低1.43 dB,在8.333 m接收点处降低1.16 dB,达到降噪设计目标。在此基础上,进行1∶30缩比模型的风洞试验,测试受电弓空腔后壁面监测点的脉动压力,并对其进行傅里叶变换(FFT),得到300~5 000 Hz范围内噪声频谱特性;在射速40 m/s下,后壁面中间、边缘监测点处总声压级分别减小0.53、0.49 dB。将仿真与试验数据进行对比,得出总声压级最大误差为3.54 dB,误差值占总声压级的2.4%,验证了气动噪声计算方法的准确性。  相似文献   

5.
本文建立包括头车、尾车、中间车、受电弓、6个转向架在内的CRH3高速列车整车三维绕流流动的物理数学模型,用Fluent软件内大涡模型数值计算外部瞬态流场,得到时域Lighthill声源项,对时域声源项进行傅利叶变换得到频域声源项,用有限元-无限元法计算高速列车车头及转向架、受电弓、车尾及转向架附近的气动噪声,得到高速列车主要气动噪声源的声压分布及特点。计算结果表明:受电弓弓头部附近气动噪声最大,而且具有更多高频噪声,300km/h速度运行时其总声压级为156.3dB,受电弓底座也具有很高的声压级,并且具有较多的低频噪声;在车头及第一个转向架附近,转向架区域噪声明显高于车头鼻尖处,其总声压级分别为135.3dB和129.7dB;在车尾及最后一个转向架附近,车尾部噪声大于转向架区域噪声;总气动噪声声压级按受电弓滑板、受电弓底座、车尾部、第一个转向架、车头部逐次降低。通过与现有文献的对比分析,证明了本文计算结果的正确性。  相似文献   

6.
高速列车整车气动噪声及分布规律研究   总被引:1,自引:0,他引:1  
本文建立包括头车、尾车、中间车、受电弓、转向架在内的CRH3型高速列车整车三维绕流流动的数值计算模型,用Fluent软件计算不同速度的外部稳态流场,基于稳态流场结果,使用宽频带噪声源模型计算车身表面气动噪声源,得到车体表面声功率级分布;以稳态流场为初始值,用大涡模拟计算车外部瞬态流场,基于瞬态流场用FW-H噪声模型预测高速列车辐射的远场噪声;分析车体表面声功率级和远场总声压级的分布规律,并将车体侧面远场噪声计算结果与试验结果进行比较分析。结果表明:列车高速运行时的气动噪声源主要是迎风侧车头及受电弓等曲率变化较大的曲面,受电弓滑板表面声功率级最大,高于头车头部15dB;从总声压级来看,受电弓滑板、头车第一个转向架和头车鼻尖处总声压级分别为160dB、135dB、130dB,受电弓滑板处具有最大的总声压级;从车体侧面噪声来看,离地面越近噪声越大。通过将远场噪声计算结果与噪声测试结果的对比证明了本文计算结果的准确性。  相似文献   

7.
建立3辆车编组高速列车气动噪声计算模型,包括1辆头车、1辆中间车、1辆尾车、6个转向架和1个受电弓,利用标准k-ε湍流模型和大涡模拟分别计算列车的外部稳态和瞬态流场,并基于瞬态流场用FWH方法计算高速列车远场气动噪声。计算单个转向架、全部6个转向架、车体头部、车体尾部、车体中间部、全部车体、受电弓、列车整体分别为噪声源时的远场辐射噪声,分析这些噪声源对远场噪声评估点的总声压级,以及不同噪声源对远场噪声的贡献,以验证局部气动噪声源对远场辐射噪声与整体噪声源之间的叠加关系。计算结果表明:车体是高速列车远场辐射噪声的主要噪声源,其次是受电弓,转向架对远场辐射噪声影响相对较小;从局部噪声源来看,车体头部、受电弓、头部第1个转向架是高速列车远场辐射噪声的主要噪声源;各局部气动噪声源远场噪声的叠加值与整体气动噪声源远场噪声一致,验证了高速列车整体噪声源与其包括的各局部噪声源符合声源叠加原理。  相似文献   

8.
国外动车组受电弓的气动噪声介绍   总被引:2,自引:0,他引:2  
介绍了动车组受电弓气动噪声的产生机理,在此基础上阐述了日本新干线动车组受电弓为降低其气动噪声而采用的措施,和德国ICE动车组的受电弓设计依据和试验结果的对比,根据国外动车组受电弓情况总结了减少动车组受电弓气动噪声所采取的措施,简单介绍了最近几年有关降低动车组受电弓气动噪声的相关研究成果,主要是进一步改进受电弓的弓角和弓头。  相似文献   

9.
为研究高速列车受电弓安放位置和受电弓导流罩嵌入车体高低对气动噪声的影响,基于计算声学理论,建立高速列车气动噪声模型。高速列车模型采用四节编组,包括头车、两节中间车和尾车。受电弓分别安放于02车一位端、02车二位端和03车一位端,并考虑受电弓的开/闭口方式。研究结果表明:沿列车长度方向,受电弓分别安放在02车一位端、02车二位端、03车一位端的受电弓导流罩区域的气动噪声最大声压级呈减少趋势,且这种减小趋势与受电弓开闭口方式无关;受电弓导流罩安放在同一位置时,受电弓以闭口方式运行的受电弓导流罩区域声压级均小于开口方式,最大声压级相差1.1 dBA;采用dlz3模型(受电弓导流罩与车顶表面平齐)的气动噪声性能最优,最大声压级减小2.3 dBA。  相似文献   

10.
受电弓导流罩是改善高速动车组气动性能的重要部件。为降低高速动车组受电弓导流罩区域的气动阻力,基于DOE(实验设计)方法对优化空间均匀采样,进行了涉及气动性能、结构强度等性能指标的多学科优化设计;然后借助NCGA(多目标优化遗传算法)建立近似模型,寻求气动阻力、结构强度综合性能最佳的导流罩结构。结果表明,最佳受电弓导流罩方案的整车气动阻力比初始方案降低5%,同时压力、变形满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号