首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process,but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees,the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change,and the slope of the temperature time history curve remains the same. However,the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size,boundary conditions,and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38mm needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems.  相似文献   

2.
With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious. The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose, because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.  相似文献   

3.
A mechanical model is established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation, it is shown that the frictional coefficient η notably influence the crack-tip field.  相似文献   

4.
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.  相似文献   

5.
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefore, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.  相似文献   

6.
It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced.Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth(D) to the sound wavelength(λ). The obtained results are compared with the experimental data and good agreement is displayed.  相似文献   

7.
This paper describes an analytical investigation into synchrophasing, a vibration control strategy on a machinery installation in which two rotational machines are attached to a beam-like raft by discrete resilient isolators. Forces and moments introduced by sources are considered, which effectively represent a practical engineering system. Adjusting the relative phase angle between the machines has been theoretically demonstrated to greatly reduce the cost function, which is defined as the sum of velocity squares of attaching points on the raft at each frequency of interest. The effect of the position of the machine is also investigated. Results show that altering the position of the secondary source may cause a slight change to the mode shape of the composite system and therefore change the optimum phase between the two machines. Although the analysis is based on a one-dimensional Euler–Bernoulli beam and each machine is considered as a rigid-body, a key principle can be derived from the results. However, the factors that can influence the synchrophasing control performance would become coupled and highly complicated. This condition has to be considered in practice.  相似文献   

8.
An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495 diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.  相似文献   

9.
In this work, the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated. In the present paper, Reynolds Averaged Navier Stokes(RANS) equations with the Spalart-Allmaras, SST k-ω, and SST-Trans models are used for numerical simulations. The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset. Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.  相似文献   

10.
The prediction of a ship's resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull forms advancing in still water are numerically studied using the solver naoe-FOAM-SJTU, which was developed based on the open source code package OpenFOAM. Different components of the resistances are computed and compared while considering two speed conditions (12 kn and 16 kn). The resistance of hull 3 is the smallest while that of hull 5 is the largest at the same speed. The results show hull 3 is a good reference for the design of similar ships, which can provide some valuable guidelines for hull form optimization.  相似文献   

11.
Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domains and in each sub-domain an eigenfunction expansion of the velocity potential is obtained by satisfying the Laplace equation,the boundary conditions on the free surface and on the sea bed.The unknown coefficients of eigenfunction expansions are determined by boundary conditions on the porous hulls.In the paper,the boundary conditions are based upon the assumption that the flow in the porous medium is governed by Darcy’s law.Two porous-effect parameters applied on two porous cylinders are functions of the vertical coordinate instead of the constant.Wave loading on the outer and inner cylinder is presented in the numerical results.  相似文献   

12.
In order to reduce time and improve the probability of successful matting it is useful to co-ordinate between the movement control and mating process of the underwater vehicle. Because it is hard to control with the common method under the condition of mating process, the hierarchical intelligent control is introduced. Timed fuzzy Petri net (TFPN) , which is the integration of PN and fuzzy reasoning, is used in the design of coordinate level of hierarchically intelligent control. It made the control process better in reflecting the characteristics of time-driven, event-driven, fuzzy information and so on. The test shows that TFPN could shorten the time of mating and enhance the efficiency.  相似文献   

13.
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.  相似文献   

14.
[Objective]This paper proposes a fuzzy sliding mode controller based on T-S fuzzy logic for the vertical plane motion control of an autonomous underwater glider (AUG) with limited actuator capability. [Methods]In the fuzzy sliding mode controller, the fuzzy switching rate is used to replace the switching rate in the fixed time controller to effectively suppress buffeting. The fuzzy switching rate is obtained by fitting the switching rate of the fixed time controller with T-S fuzzy rules. Based on the limited capabilities of AUG actuators, a saturation auxiliary system is designed to improve the actuator saturation effect. Finally, the performance of the system is verified by Lyapunov stability analysis and numerical simulation. [Results]The results show that the AUG under the fuzzy sliding mode controller and the saturation auxiliary system can converge in finite time. The effectiveness of the fuzzy sliding mode controller and the saturation auxiliary system are verified by numerical simulation. [Conclusions]By making comparisons with the fixed-time controller, it is verified that the two controllers have similar control performance, and the buffeting of the fuzzy sliding mode controller is lesser. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

15.
16.
[Objectives]Flow separation increases the drag and noise of underwater vehicles, and influences the controllability of their control surfaces. Therefore, the influence of slip caused by superhydrophobic surfaces on drag reduction and flow separation is studied. [Methods]A partial slip boundary condition is developed, and the flow around a circular cylinder and foil with a slip boundary at high Reynolds numbers are numerically simulated. [Results]The results show that the when the slip length increases, the flow around the cylinder goes through three stages: the turbulent Kármán vortex street, laminar Kármán vortex street and non-separation Stokes flow. The drag coefficient increases first and then decreases, and the vortex shedding frequency increases. For flow around a foil, the separation position moves downstream until the separation region disappears when the slip length increases, and the drag coefficient decreases while the lift coefficient increases. [Conclusions]The results of this study show that for flow past bluff body at high Reynolds number, the slip boundary can control flow separation and reduce drag effectively, providing technical support for the application of superhydrophobic surfaces for the flow control of underwater vehicle appendages. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

17.
The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.  相似文献   

18.
The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise sources to the radiated noise of a submarine were compared and analyzed, and emphasis was put on the original source, production mechanism, and their correlative characteristics. On the basis of analysis on underwater tracking and pass through characteristics of the target submarine, the double-peak phenomenon was reasonably interpreted. Furthermore, the correctness of the theoretical interpretation was verified adequately in real submarine tests. The double-peak phenomenon indicates that the space distributing character on submarine radiated noise are both asymmetrical with time and space, whereas that is provided with directivity. Studying the double-peak phenomenon in depth has important reference value and meaning in engineering practice for understanding the underwater radiated noise field of submarines.  相似文献   

19.
一种基于PSO优化HWFCM的快速水下图像分割算法   总被引:3,自引:0,他引:3  
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.  相似文献   

20.
Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号