首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了同步提高目前新能源汽车发电机的气动噪声性能和散热效果,满足更严苛的噪声、振动与声振粗糙度需求,以某型汽车交流发电机为研究对象,基于台架试验和数值仿真方法探究端盖栅格对气动噪声和温度场分布的综合影响规律;基于五点法获得了噪声声压级分布,基于多热电偶测点获得了关键部件的温度分布,基于计算流体动力学仿真软件和电磁场Maxwell仿真软件获得了发电机内部的流场、声场和温度场分布,采用试验结果验证数值计算模型的正确性;在分析原始发电机气动噪声特性和温度场特性的基础上,设计了具有不同倾角的端盖栅格侧壁以降低冷却气流冲击的动能损失,探讨了端盖栅格倾角和扇叶气流出口角的合理匹配,并基于牛顿冷却理论研究了波状端盖栅格对增加换热表面面积和降低气动噪声的影响。研究结果表明:端盖栅格结构对气动噪声有较大贡献,同时也对冷却效果产生显著影响;端盖栅格侧壁倾斜40°时能够和扇叶气流出口角更合理地匹配,有效减少冷却气流冲击的能量损失,三相定子绕组最高温度降低9.63 K,12阶次气动噪声降低3 dB(A)以上;波纹状端盖栅格增加对流换热面积和气流速度的同时降低了气动冲击作用,使得端盖散热量增加7.72 W,定子铁芯、端盖和三相定子绕组温度分别降低了5.12、4.94和5.29 K,栅格对涡流的改善以及气流对栅格的冲击削弱使12和24阶次气动噪声降低3 dB(A)以上。   相似文献   

2.
高速列车表面气动噪声偶极子声源分布数值分析   总被引:4,自引:0,他引:4  
以Lighthill方程为基础,采用边界元法并与计算流体动力学相结合,对高速列车表面气动噪声偶极子声源进行数值分析,以获得高速列车表面气动噪声偶极子声源分布.探讨了不同车速工况下列车车身表面气动偶极子声源的强弱及其分布特征,在此基础上对基于表面气动偶极子声源的列车外部气动声场进行了数值分析.研究表明:列车运行速度为270 km/h、频率为2.5 kHz时,声压级在90 dB以上的气动偶极子声源主要分布在车底转向架附近,其最大声源声压级约97 dB,是高速列车主要的气动噪声源区.  相似文献   

3.
当前半封闭式声屏障逐渐在高速铁路工程中得到了应用,但其在运营状态下的实际降噪效果研究还极其有限.为此,以沪昆客专杭长段半封闭式声屏障为工程背景,分别在声屏障内、外表面,以及封闭侧和敞开侧不同距离处布置测点,监测高速列车通过时的噪声,并对场点的声压级频谱、声场分布、衰减规律、隔声量和插入损失等声学特性进行讨论.结果表明:多重反射造成的混响效应使得半封闭式声屏障内表面的噪声有所增大;距封闭侧线路中心7.5 m处,高位测点比低位测点声压级大,而其他位置不同高度测点在垂向的指向性不明显.半封闭式声屏障的隔声量随频率增加而增大,在1 000 Hz处最大约26 dB;距轨道中心线7.5 m和25 m处的插入损失均值为16.5 dB(A)和15.5 dB(A).   相似文献   

4.
为了研究负重型外骨骼液压动力单元温升及噪声过大的问题,利用ANSYS Fluent软件对负重型外骨骼液压阀块内部流道主要组成部分Z型流道和交叉流道进行计算流体动力学仿真,分别设计了5组不同尺寸的仿真试验,分析不同流道尺寸下流体速度稳定性与压力损失变化情况. 仿真试验表明,对于流道直径为5 mm的外骨骼动力单元液压阀块交叉流道压力损失随着进出口流道偏心距的增大而增大,流体速度在偏心距为 1.25 mm时稳定性最好;Z型流道压力损失在进出口流道之间的距离为 17 mm时达到最小,流体速度随着该距离的增大其稳定性上升. 优化过后的样机试验表明,液压阀块最大温度下降了3.3 ℃,最大噪声下降了7.6 dB.   相似文献   

5.
为确保某海外地铁车辆辅助变流器满足噪声性能要求,建立辅助变流器的统计能量分析模型,分析平板子系统和声腔子系统的能量分布特征以及噪声传递路径,通过开展不同工况的噪声测试获得声功率级和噪声频谱特性,并对1800 Hz的振动噪声过大问题开展针对性分析.研究结果表明:测点2和测点5的噪声较高与空气传声、噪声透射和结构辐射噪声有...  相似文献   

6.
建立高速列车头型气动噪声分析方法有利于了解头型与空气相互作用产生的气动噪声特性及其对车内外的影响.为此,先后建立了两个头型的1∶8缩比三节编组气动噪声仿真模型,并开展气动噪声仿真计算,得到外场测点平均总声压级.通过与风洞试验结果相比较,两者量值相差小于3 d BA,且头型1均小于头型2,验证数值仿真结果.为了实现全尺寸高速列车头型气动噪声数值仿真,提出在三节编组的计算域中截取一部分—子域法.子域法和整车得到头型部位的气动特性一致性间接表明子域法的合理性.利用子域法开展了全尺寸头型1和头型2气动噪声仿真计算,得到头型表面声功率、表面和外场总声压级,可为头型选型和优化提供依据,从而建立了基于数值仿真的全尺寸高速列车头型气动噪声分析方法,解决了以往无法通过风洞试验和数值仿真进行全尺寸高速列车头型气动噪声分析.  相似文献   

7.
以中国某型高速列车为研究对象, 针对高速列车运行时主要噪声来源之一的转向架区噪声开展试验研究, 掌握其噪声特性和规律, 研究了不同类型和位置的转向架区噪声特性, 预测了不同速度下转向架区噪声水平和频谱特性; 基于一定的假设, 采用测试数据类比法对车头转向架区噪声成分进行分离。研究结果表明: 列车在200~350 km·h-1速度范围内运行时, 车辆主要噪声源集中在转向架区; 转向架区噪声表现为车头转向架区噪声大于车尾转向架噪声, 200 km·h-1运行时车头转向架区噪声大于车尾转向架区噪声约3 dB(A), 主要原因为在车头转向架处气流冲击导致的气动噪声大于车尾转向架处涡流导致的气动噪声; 中间动车转向架区噪声大于中间拖车转向架区噪声, 200 km·h-1运行时中间动车转向架区噪声大于中间拖车转向架区噪声约5 dB(A), 主要原因为相比于中间拖车转向架区噪声, 中间动车转向架区增加了牵引系统噪声; 随着运行速度的提高, 转向架区噪声在全频段内显著提高, 噪声峰值频率也会增大, 主要原因为车轮滚动噪声所致, 速度越大, 其轨枕冲击频率越高; 中间拖车转向架区噪声随速度增长的3次方关系符合轮轨噪声随速度的增长趋势, 对于车头转向架区噪声来说, 气动噪声成分更加显著, 并且随着运行速度的提高, 气动噪声所占比重呈增加的趋势。   相似文献   

8.
采用大涡模拟方法和FW-H声学模型对车用交流发电机气动噪声进行数值模拟,采用矢量合成方法优化交流发电机前扇叶分布角度,以低噪声、高流量与优化频谱结构降低单频旋转噪声为目标,分析了交流发电机气动噪声特性。分析结果表明:交流发电机噪声声压级、主要影响阶次与幅值的数值模拟与试验结果有很好的一致性;交流发电机气动噪声源为前后扇叶,总噪声的主要影响阶次为第6、8、10、12、18阶次,主要能量集中在1 120~5 600Hz范围内;总噪声最大预测误差为6.97dB,第12、18阶次旋转噪声预测误差分别为2.30、3.30dB;前扇叶分布角度优化后总噪声最大降幅为3.10dB,平均降幅为2.58dB,第12、18阶次噪声平均降幅为5.80dB,降噪效果明显。  相似文献   

9.
随着高速列车运行速度的提高,其气动噪声问题逐渐凸显,如何准确快速预测高速列车的远场气动噪声成为关键.利用半自由空间的Green函数求解FW-H方程,推导了考虑半模型时的远场声学积分公式,提出通过半模型的数值计算结果预测全模型高速列车远场气动噪声的方法;建立了全模型和半模型高速列车的气动噪声数值计算模型,应用改进延迟的分离涡模拟方法对不同模型高速列车表面的气动噪声源进行求解;通过风洞试验进行了全模型高速列车的数值仿真计算方法验证;对比分析了全模型和半模型高速列车周围的流场结构、气动噪声源和远场气动噪声特性.结果表明:半模型高速列车数值计算得到的列车周围流场结构、气动噪声源以及远场气动噪声特性与全模型的一致;采用半模型计算会过高估计列车尾车流线型区域表面压力的波动程度和噪声源的辐射强度,但通过半模型预测整车模型的远场噪声平均声压级误差小于1 dBA;相比于全模型高速列车,半模型计算时的网格总量减少一半.  相似文献   

10.
建立了3节编组的CRH380B高速列车气动噪声计算模型,包括6个转向架、2个风挡、3个空调机组和1个DSA380型受电弓等细微结构,采用基于Lighthill声学理论的宽频带噪声源模型对高速列车气动噪声源进行识别,基于高阶有限差分法的大涡模拟对高速列车近场非定常流动进行分析,并采用Ffowcs Williams-Hawkings声学比拟理论对高速列车气动噪声进行预测。计算结果表明:远场噪声计算结果与风洞试验结果的最大差值为1.45dBA,因此,高速列车气动噪声计算模型是准确的;对气动噪声贡献量由大到小依次为转向架系统(6个转向架)、车端连接处(2个风挡)、受电弓与空调机组,数值分别为83.58、79.31、74.08、59.71dBA;以受电弓开口方式运行的整车气动噪声贡献量小于闭口方式,最大声压级和平均声压级分别小于0.40、0.31dBA;头车一位端转向架对转向架系统气动噪声贡献量最大,为79.73dBA;对受电弓气动噪声贡献量由大到小依次为:碳滑板、平衡臂、弓头支架、底架、绝缘子、下臂杆、铰接结构、上臂杆、拉杆与平衡杆,数值分别为97.95、93.02、86.63、82.07、79.46、76.85、72.43、66.63、62.02、54.22dBA;在速度为350km·h-1时,受电弓气动噪声存在主频为305、608、913 Hz,且此3阶单频噪声频率是由弓头部位涡流脱落所导致的气动噪声贡献。  相似文献   

11.
为了创建高速列车气动噪声源识别方法,以气动声学基本波动方程为基础,将高速列车气动声源等效为无数微球形声源组成,利用声辐射和流场物理量之间的关系,并结合高速列车气动数值仿真技术,建立了高速列车偶极子声源和四极子声源的识别方法,从全新的角度对某高速列车头车气动噪声源进行识别;基于涡声方程声源项特征,进一步揭示了偶极子声源和流场流动的关系.研究结果明确了高速列车主要偶极子和四极子声源的强弱和分布特征,表明了气流的直接撞击和分离现象是产生声源的主要原因,头车及转向架区域气动噪声源以偶极子声源为主;偶极子声源强度较大位置出现在边沿较为尖锐的地方,在绝大多数情况下流体经过时涡量急剧增加,成为其形成强声源的主要原因.  相似文献   

12.
根据近年来高速列车气动噪声相关研究,从试验研究、理论分析和数值模拟方面介绍了当前高速列车气动噪声研究现状和研究成果, 分析了高速列车气动噪声源分布和产生机理,探讨了高速列车关键区域气动噪声降噪措施,展望了未来研究方向。研究结果表明:高速列车运行产生的气动噪声主要声源为几何体表面偶极子声源,分布在转向架、受电弓、车厢连接处、头车与尾车等区域;转向架区域存在着车体表面结构不连续性,气流流经时产生流动分离和流体相互作用,形成较强气动噪声源,可以采用转向架舱外设置裙板和舱内壁与周围铺设吸声板等措施进行降噪;受电弓各部件受到流动冲击作用,产生周期性涡旋脱落诱发的单音噪声,可通过减少受电弓结构部件、改变受电弓杆件截面形状、安装受电弓导流罩、受电弓两侧设置隔声板和射流控制等措施进行气动噪声有效控制;无封闭式车厢风挡形成开放式环形空腔,气流流经时产生较强的气动噪声和气动声学耦合,采用全封闭风挡可有效降低气动噪声产生;头车部位气流流动分离以及尾车部位由于尾涡脱落和非定常流动结构形成与发展,诱发气动噪声产生,头车、车身与尾车减少突出部件,保持几何体表面光滑和连续性,有利于取得较好的降噪效果;随着未来更高速度级高速列车研发,有必要进一步深入研究高速列车气动噪声理论与数值模拟方法,提升气动噪声降噪技术水平,有效控制气动噪声。   相似文献   

13.
汽车燃油空气加热器噪声性能   总被引:5,自引:0,他引:5  
运用声功率测量、表面声强测量和频谱测量等方法,分析认为风扇噪声、电机噪声和燃烧噪声是加热器的主要噪声源,由此产生的噪声经方箱、回风口等向外辐射,提出了采取回风消声器消声与整机隔声罩隔声等降噪措施。试验结果表明,加热器各频带的声压级都有了一定程度的降低,特别是人耳最为敏感的1kHz处的噪声降低了4.1dB。  相似文献   

14.
In order to overcome the obstacle of singular integral in boundary element method (BEM), wepresented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Itsprinciple includes three steps: first, the sound pressure field of an arbitrary shaped radiator is measured witha microphone array; then, the exterior sound field of the radiator is computed backward and forward using theWSM; at last, the final results are visualized in terms of sound pressure contours or animations. With thesevisualized contours or animations, noise sources can be easily located and quantified; also noise transmissionpath can be found out. By numerical simulation and experimental results, we proved that the technique aresuitable and accurate for sound field reconstruction. In addition, we presented a sound field reconstruction sys-tem prototype on the basis of this technique. It makes a foundation for the application of wave superpositionin the sound field reconstruction in industry situations.  相似文献   

15.
为揭示超高层建筑气动噪声产生的机理及空间分布特征,利用大涡模拟,在大气边界层内求解超高层建筑绕流场,结合FW-H (Ffowcs Williams-Hawkings)方程的声类比法进行了超高层建筑周围声压场的数值模拟. 研究发现:超高层建筑每个面均是偶极子声源,气动噪声是由建筑表面的偶极子声源产生,且受建筑表面风压主导,顺流向和横风向的脉动压力分别主导相应方向的声场辐射强度; 气动噪声沿高度方向先增大后减小,在0.7倍建筑高度附近噪声达到最大值; 在相同高度和离建筑表面相同距离的不同空间点,当空间点面对建筑迎风面时总声压级最大、背风面次之,侧风面最小; 随着空间点与建筑距离的增大,空间点总声压级快速衰减,且横风向较顺风向衰减更快. 研究认为:大涡模拟和声类比相结合的方法能合理预测超高层建筑的气动噪声;优化气动外形,降低建筑表面风压是降噪的最有效途径.   相似文献   

16.
利用HyperMesh软件建立辅助变流器风冷系统的热仿真模型并利用FLUENT软件进行求解计算,得到流速分布和温度场分布.通过实验研究中的多个测温点数据与仿真结果进行对比,表明仿真结果具有较高的可信度.热仿真分析方法可为辅助变流器的热设计提供参考.  相似文献   

17.
以某款发动机风扇为研究对象,采用数值模拟方法,应用Fluent和LMS Virtual Lab分别模拟发动机风扇流场和声场分布。将计算结果与半消音室内的风扇测试噪声进行对比,验证了联合仿真计算风扇噪声方法的准确性。在工程实际中可用于对风扇性能的初步检测,可以为下一步风扇的优化提供技术依据。  相似文献   

18.
开展了高速铁路桥梁和桥梁-全封闭声屏障典型结构断面的振动和噪声测试,建立了高速铁路桥梁-全封闭声屏障系统结构噪声的快速多极边界元法(FMBEM)数值预测模型,深入分析了板件的车致振动与结构噪声辐射的相关性和时频特性,并以此验证了FMBEM数值预测模型求解结构噪声的准确性;对比分析了有、无全封闭声屏障工况下32 m简支箱形梁桥结构噪声的空间和频域分布特性,并比较了FEBEM与边界元法(BEM)的计算效率。分析结果表明:桥梁-全封闭声屏障系统板件的振动与噪声的频谱分布规律基本一致;受全封闭声屏障隔声作用和梁体遮蔽作用的影响,距箱梁底板表面0.3 m处测得的噪声信号基本反映了底板的结构噪声特性,其余测点则不同程度地受到其他板件或轮轨系统辐射噪声的影响;计算与实测噪声的幅频特性吻合较好,峰值处计算误差在1.5 dB以内;全封闭声屏障的安装导致桥梁板件的振动和结构噪声均减小,也改变了桥梁周围的声场分布特性,桥梁板件表面场点的总声压级降低了0.8 dB,梁体下方地面场点总声压级增大了4.1~9.4 dB;梁体斜上方场点总声压级增大了9.6~18.1 dB,桥梁-全封闭声屏障结构顶部局部区域的结构噪声比无声屏障的桥梁大12.4 dB以上;FMBEM计算耗时为传统BEM的1/3,计算更为高效。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号