首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
《汽车驾驶员》2006,(10):106-115
雪佛兰-新赛欧;雪佛兰-新赛欧S-RV;雪佛兰-乐骋;天津丰田-新威驰;雪佛兰-乐风[编者按]  相似文献   

2.
《轿车情报》2008,(11):76-76
雪佛兰Cruze科鲁兹是通用汽车整合全球资源开发的紧凑型标杆车型。雪佛兰Cruze借鉴了诸多雪佛兰传奇跑车科尔维特上的设计元素,包括车身的线条和内饰设计,进一步诠释出雪佛兰品牌全球的设计语言。而这一标志性的设计风格也将会体现在雪佛兰未来新产品的设计中。  相似文献   

3.
重塑雪佛兰     
《经济导报》2008,(3):48-52
雪佛兰欧洲执行董事Wayne Brannon雄心勃勃地计划拓展雪佛兰品牌——GM品牌中发展迅速的一支全球品牌,目前雪佛兰公司正将前大宇汽车公司纳入旗下  相似文献   

4.
雪佛兰SS运动型概念跑车(Chevrolet SS) 雪佛兰SS由通用汽车设计部门的洛山矶工作室制造而成,其鲜艳的外观让人一眼就能感受到其强劲的动力和性能表现。作为对雪佛兰超级跑车传统的现代演绎,雪佛兰SS秉承了雪佛兰卓越的性能表现风格,同时又更新了新一代SS的概念,展现了新一代雪佛兰的雄姿,将满足各年龄段的汽车狂热者。  相似文献   

5.
《世界汽车》2009,(10):133-133
9月15日,上海通用汽车宣布搭载通用汽车全新1.8L Ecotec DVVT发动机的2010款雪佛兰景程在全国同步上市销售。2010款雪佛兰景程1.8L共有7款车型.价格区间为10.88万-16.19万元。其中.针对消费者日益突显的个性化需求,2010款雪佛兰景程新增炫酷黑色内饰导航版。2010款雪佛兰景程1.8L是雪佛兰品牌基于广泛的市场调研和用户反馈推出的年度改款产品,将成为雪佛兰品牌的全新主力产品。  相似文献   

6.
OD 《车时代》2011,(11):124-133
1911年,雪佛兰成立;2010年,雪佛兰在全球销售了426万辆汽车,平均每7.4秒卖出一辆;2011年前6个月,雪佛兰在全球售出235万辆汽车,比去年同期增加286499辆,同比增长14%,创雪佛兰品牌百年历史中半年销量的最好业绩。  相似文献   

7.
新车     
《世界汽车》2012,(3):12+14-17
雪佛兰迈锐宝正式上市2012年2月15日,雪佛兰首款全球中高级旗舰车型迈锐宝上市发布会在上海世博中心隆重举行。雪佛兰迈锐宝正式登陆中国市场,共推出5款车型,售价区间为16.29万~22.99万元,  相似文献   

8.
雪佛兰 Impala     
《车时代》2012,(4):127-127
说起雪佛兰Impala,可能大家都还不算耳熟能详,不过这款车的确是通用汽车中销量最大的车型之一。Impala的诞生,包含了雪佛兰无比的创意,表现出无比的竞争力,同时体现了雪佛兰降低成本策略的成功。  相似文献   

9.
《汽车与运动》2012,(3):80-81
说起雪佛兰Malibu,我们必须先说说雪佛兰Chevelle这个车型。1963年,雪佛兰推出了主力车型Chevelle,它涵盖了四门轿车(Sedan)、双门轿跑(Coupe)、软顶敞篷(Convertible)等诸多形态的车型,  相似文献   

10.
《天津汽车》2011,(7):9-9
据报道,通用汽车公司将在日本市场发布旗下的新款雪佛兰Sonic,该车型已经于2011年1月在美国市场上推出,目前日本版雪佛兰Sonic车型的细节尚未公布,而美国版雪佛兰Sonic的售价为1.45万美元。  相似文献   

11.
筱飞 《汽车与配件》2010,(35):38-40
雪佛兰Volt增程型电动车的锂离子蓄电池提供了全球最大的8年或16万km的质保期。  相似文献   

12.
正当Volt为人津津乐道的时候,IHS Automotive带着各种疑问采访了通用雪佛兰Volt产品线主管Tony Posawatz。  相似文献   

13.
正当Volt为人津津乐道的时候,IHS Automotive带着各种疑问采访了通用雪佛兰Volt产品线主管TonyPosawatz。  相似文献   

14.
小雨 《时代汽车》2009,(3):77-77
尽管通用在其他产品上表现不佳,但是新型增程电动车却给雪佛兰赢来了喝彩,而这款车的设计理念和技术路线也给通用旗下的其他车型带来益处。  相似文献   

15.
张楚 《汽车与配件》2008,(10):52-53
2007年。俄罗斯市场潜力的国际汽车巨头们正大快朵颐。但想影响整体竞争格局难上加难。雪佛兰以高达19万辆的销量成为俄罗斯2007年外国汽车品牌市场上的火车头。[编者按]  相似文献   

16.
“金领结”     
雪佛兰新车科帕奇上市与许多人预期的不同,并非在上海通用工厂生产,而是以整车进口的形式进入国内,因此价格也超过了预期。那么这款进口车的竞争力到底如何?  相似文献   

17.
Environment Canada (EC) and Natural Resources Canada (NRCan) separately tested two 2012 Chevrolet Volts between 2013 and 2014 in Ottawa, Ontario on public roads in the summer and winter months using realistic cabin-climate control settings. More than 1300 trips were conducted over nine routes: three city, one congested, two arterial, one highway and two expressway routes. EC tests recorded cabin conditioning, traction battery and 12 V accessory power, select vehicle component temperatures, regulated emission rates and exhaust flow, and DC charge energy. Both NRCan and EC tests measured cumulative electrically driven distance (all-electric range), select CANbus signals and AC grid supply charge energy. Results from these studies were analysed to evaluate the overall performance of the Chevrolet Volt on public roads in climates representative of most of Canada (-27 °C to 37 °C) using realistic accessory settings. At 25 °C the Chevrolet Volt’s on-road all-electric EPA-method adjusted range is generally less than the U.S. EPA sticker rating (57.9 km). Cabin conditioning energy was found to be directly related to the difference between ambient and cabin temperature, except at low temperatures (< 0 °C) when the 1.4 L engine activates to assist the thermal management system. On average, heating the cabin in the winter months consumed significantly more electric energy than cooling the cabin in the summer months. Summer city and highway driving resulted in the lowest energy consumption (Wh/km), while congested and expressway driving cycles resulted in the highest. In the winter months, many differences between the drive cycles were not discernible due to the high cabin conditioning energy consumptions.  相似文献   

18.
本文以雪佛兰赛欧轿车仪表为例,论述汽车仪表的发展过程及现行仪表的结构、工作原理以及发展趋势,侧重研究仪表的电器特性和检测方式,为仪表检测和仪表设计提供参考。并且通过大量实验对数据结果进行验证,能够将实验成果应用于汽车电器检测教学过程中,也能够应用于实验实训设备的二次开发。  相似文献   

19.
This paper demonstrates a method to estimate the vehicle states sideslip, yaw rate, and heading using GPS and yaw rate gyroscope measurements in a model-based estimator. The model-based estimator using GPS measurements provides accurate and observable estimates of sideslip, yaw rate, and heading even if the vehicle model is in neutral steer or if the gyro fails. This method also reduces estimation errors introduced by gyroscope errors such as the gyro bias and gyro scale factor. The GPS and Inertial Navigation System measurements are combined using a Kalman filter to generate estimates of the vehicle states. The residuals of the Kalman filter provide insight to determine if the estimator model is correct and therefore providing accurate state estimates. Additionally, a method to predict the estimation error due to errors in the estimator model is presented. The algorithms are tested in simulation with a correct and incorrect model as well as with sensor errors. Finally, the estimation scheme is tested with experimental data using a 2000 Chevrolet Blazer to further validate the algorithms.  相似文献   

20.
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号