首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
该文介绍了高速铁路客运专线大跨度预应力混凝土连续梁挂篮悬臂浇筑法施工时梁体的线形控制.利用数值模拟的方法,分别计算出了桥梁在恒载作用下的累积位移、活载位移,以及预拱度的设置.通过误差分析和施工状态预测对计算模型进行修正,使梁体的线形控制结果达到设计要求.  相似文献   

2.
通过混凝土的徐变试验,结合月亮湾大桥悬臂施工,对预应力梁式桥悬臂施工预拱度的设置进行探讨。综合考虑预拱度的影响因素和施工现场控制,有效地控制悬臂结构挠度,确保桥梁结构合龙精度与成桥线形流畅。  相似文献   

3.
利用有限元分析方法,对三跨预应力混凝土连续刚构桥的悬臂施工过程进行了数值模拟,分别计算了在不同徐变计算模式下的施工预拱度,研究混凝土收缩徐变对施工预拱度的贡献和不同徐变计算模式对施工预拱度的影响;另外,分别计算考虑混凝土收缩徐变和不考虑混凝土收缩徐变两种情况下的桥梁结构内力,分析了混凝土收缩徐变在桥梁悬臂施工期间对结构内力的影响。研究结果表明:混凝土收缩徐变对连续刚构桥施工预拱度有较大影响,且不同徐变计算模式对施工预拱度影响不同;在桥梁合龙前,桥梁结构为静定结构,若忽略钢筋和预应力筋的约束影响,混凝土收缩徐变对结构内力没有影响。  相似文献   

4.
为研究Y墩刚构桥悬臂施工监控关键技术,以主跨148 m的Y墩刚构勇进路大桥为工程背景,从桥梁结构特点、施工方案、预拱度概念、施工监控线形测点方案和合龙施工工艺影响等方面,阐述了施工监控的预拱度概念,提出了有效的线形监控手段,对比分析了不同合龙施工工艺对施工合龙误差的影响。结果表明:施工成桥线形为设计线形与成桥预拱度之和,成桥预拱度计算与施工预拱度存在较大的差异,建议采用梁顶钢筋头测点反算梁底标高,进行线形监控,可有效避开波浪型梁顶面引起的较大误差;合龙施工工艺对合龙误差影响较大,在确定最大悬臂段立模标高前,应先确定最终的合龙施工方案,以准确预测合龙误差,实现顺利合龙。  相似文献   

5.
大跨度连续梁悬臂施工线形监控与合拢顺序优化   总被引:1,自引:0,他引:1  
该文介绍了大跨度预应力混凝土连续梁挂篮悬臂浇筑法施工时梁体的线形监控。利用数值模拟的方法,分别计算出了桥梁在恒载作用下的累积位移、活载位移,给出了梁体的预拱度,通过误差分析和施工状态预测对计算模型进行修正。以此来保证成桥后桥面线形、合拢段两端标高的相对偏差不大于规定值,保证桥梁成桥线形符合设计要求。考虑了合拢顺序对施工阶段变形产生的影响,相应优化了合拢方案,为类似连续梁合拢施工方案的选择提供了参考。  相似文献   

6.
针对大跨度桥梁悬臂施工中如何合理设置预拱度的问题,首先从施工和使用两个阶段着手分析影响预拱度的主要因素,接着从桥梁线形美观、有利行车为出发点提出按高次正弦曲线分配预拱度的方法,最后将该方法应用于陈村特大桥的施工监控中。结果表明:该方法的拟合结果能与计算值基本重合,成桥线形比较平顺、协调,比二次曲线拟合有更好的效果,而且其操作使用简单,具有一定的工程实用价值。  相似文献   

7.
陈才  路鑫 《公路与汽运》2023,(5):120-123
为抵消施工阶段各种因素产生的施工挠度,确保合龙的顺利进行和桥梁线形满足设计要求,连续刚构桥悬臂施工中设置施工预拱度。文中基于连续刚构桥施工阶段下挠变形特征,以某连续刚构桥为例建立MIDAS/Civil模型,提取合龙前每个施工阶段的节点下挠数据,运用MATLAB分别进行线性拟合和非线性拟合,得出施工预拱度估算公式;结合施工阶段下挠影响因素和施工预拱度估算公式,提出施工控制措施,使桥梁达到设计线形要求。  相似文献   

8.
徐华杰  王军 《路基工程》2006,(3):133-135
结合通启高速公路新三和港特大桥悬臂浇筑的施工,介绍采用挂篮平衡悬臂浇筑施工中结构预拱度的设置方法、影响挠度控制的主要因素等,确保结构正确合拢和成桥后的线形。  相似文献   

9.
连续梁桥悬臂浇筑施工挠度控制的因素分析   总被引:5,自引:0,他引:5  
大跨径多跨连续梁桥悬臂浇筑施工时,挠度控制的好坏直接影响到连续梁桥成桥后正常使用状态下的线形。本结合广东某在建ZQ桥悬臂浇筑的施工状况,重点阐述了采用挂篮平衡悬臂浇筑施工中结构预拱度设置的方法、影响挠度控制的一些主要因素,从而确保结构合拢精度和成桥后的线形。  相似文献   

10.
以雄楚大街快速路跨铁路高架桥(28+68.5+63.5)m转体施工连续钢箱梁为例,分析了中支点外挑横梁的设置方式对主梁结构效应及抗倾覆稳定性的影响,以及转体阶段预拱度设置方式对施工及成桥状态结构行为的影响。结果表明,外挑横梁对提高钢箱梁抗倾覆稳定性及改善结构受力较为有利,转体完成后施加上顶力合龙可减小预拱值,并改善一期恒载作用下的结构受力状况。  相似文献   

11.
坦桑尼亚坦桑蓝跨海大桥主桥为(85+4×125+85) m五塔六跨矮塔斜拉桥,主梁为鱼腹式预应力混凝土等高箱梁,采用普通挂篮悬浇施工,设6个合龙口。为选择边跨、次边跨和中跨合理的合龙顺序,采用MIDAS Civil软件建立主桥不同合龙顺序有限元模型,分析合龙顺序对主梁恒载预拱度、应力、合龙阶段位移以及成桥索力的影响。结果表明:合龙顺序对主梁恒载预拱度影响较大,对主梁合龙阶段位移有一定影响,但对主梁应力、成桥索力影响较小,先边跨再次边跨最后中跨合龙的顺序为该桥最优合龙顺序。最终该桥采用了先边跨再次边跨最后中跨的顺序合龙,施工和成桥阶段全桥线形控制良好,结构受力安全。  相似文献   

12.
悬臂施工连续梁桥,由于挠度理论计算值与实测值不一致,有必要根据已有梁段的实测挠度值来预测下一施工梁段的预拱度值。该文基于施工现场梁段挠度实测数据比较少的客观情形,引入针对小样本信息分析与预测的灰色系统模型,对安徽省芜湖市通江大道北延线工程裕溪河大桥的实测挠度进行了分析与预测。结果表明:灰色系统GM(1,1)及GM(2,1)模型均可用于预测悬臂施工连续梁桥预拱度,当基于GM(1,1)模型对下一节段的预拱度预测时,采用前4段作为原始数据序列,较采用前3段、全部前节段作为原始数据序列的相对误差小。  相似文献   

13.
针对钢箱梁斜拉桥成桥目标线形的实现,以厦漳跨海大桥北汊主桥为例,提出基于无应力状态控制法理论的主梁预拱度取值、制造尺寸确定、预拼装线形计算及悬臂拼装控制方法.该桥为多跨连续半飘浮体系钢箱梁斜拉桥,采用桥梁结构设计系统SCDS2011建立桥梁有限元模型,求得钢箱梁设计预拱度;钢箱梁制造尺寸确定时考虑竖曲线和设计预拱度及梁体轴向压缩、弯矩转角的影响;以预拼装线形为基础计算得出每节段前、后控制点的坐标值进行预拼装;在钢箱梁悬臂拼装过程中进行线形控制时,考虑安装阶段的计算挠度及成桥状态与设计预拱线形的高程差.事实证明,采用该方法对钢箱梁斜拉桥进行成桥目标线形的控制取得了良好的施工精度.  相似文献   

14.
预应力混凝土连续梁悬灌法施工的线形控制   总被引:8,自引:0,他引:8  
结合张家跨线桥连续梁的施工,着重阐述了采用挂蓝悬臂灌注施工过程中产生挠度的一些因素,设置预拱度以及进行线形控制的有效措施,以期确保合扰精度。  相似文献   

15.
钢底板-波形钢腹板连续刚构桥悬臂拼装异步施工过程复杂,线形控制难度较大。通过数值分析与现场监测相结合的方式,建立有限元计算模型,讨论了剪切变形、相对湿度等因素对主梁挠度的影响,进一步优化预拱度,同时结合监测数据进行分析,结果表明:剪切变形对主梁挠度的影响较大,对于波形钢腹板刚构桥,其挠度计算不能忽略该部分的影响;在进行预拱度设置时,应重视环境相对湿度的影响;通过对主梁各工况变形的监测,主梁实际变形规律与理论基本相符,主梁合龙后线形平顺。  相似文献   

16.
以洞庭湖大桥滩地引桥13标段MSS55移动模架造桥机为研究对象,采用现场堆载预压试验方法模拟施工工况,测试移动模架的挠度变形规律并对分析数据与理论分析结果进行对比,判断移动模架的安全性能并修正移动模架的刚度;阐述了考虑预压、预应力张拉、移动模架落模行走及砼收缩徐变、后续梁段影响的预拱度值计算公式,为移动模架现浇箱梁的后续施工预拱度确定等提供依据。  相似文献   

17.
对悬臂施工预应力混凝土梁桥预拱度设置方法和影响因素进行研究的基础上,结合桥梁结构的有限元模拟分析以及已有大跨径混凝土梁桥长期变形规律的统计结果,提出一种以桥梁结构长期变形曲线为基础的成桥预拱度设置方法。通过工程算例,将其与已有的计算方法进行比较分析。该计算方法具有概念清晰,符合桥梁结构变形实际的特点,且具有不受桥型结构限制的特点,可为桥梁结构的设计和施工监控提供参考。  相似文献   

18.
本文结合某三跨预应力混凝土高墩大跨径连续刚构桥为工程实例,全面介绍山区高墩大跨连续刚构桥悬臂浇筑施工监控全过程的理论计算分析,诸如计算荷载的取用,成桥和施工过程的应力验算,及施工预拱度的设置,为类似工程提供施工监控计算依据。  相似文献   

19.
本文结合实际的工程案例,对先简支后连续梁桥的结构特性进行研究,分别对构造及受力进行分析,以此出发对先简支后连续梁的施工进行分析,主要对其施工中预拱度进行分析探讨,得出预拱度的主要影响因素及施工控制。  相似文献   

20.
大跨连续刚构桥线形控制质量关键取决于悬臂施工过程中各节段的预拱度取值。基于灰色GM(1,1)模型理论,将大跨连续刚构桥各节段预拱度值的理论计算值和现场实测值之间的差值作为灰色微分序列,建立新陈代谢GM(1,1)模型。结合镇大公路京杭运河大桥主桥施工监控项目工程实际,依据灰色模型对大桥施工过程中各节段的预拱度进行预测,从而控制桥梁线形。监控实践表明,灰色GM(1,1)模型能够较精确地预测施工过程中各节段的预拱度,很好地应用于大跨连续刚构桥梁的线形控制中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号