首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据均匀传输线和四端网络理论,建立ZPW-2000无绝缘轨道电路分路电流的计算模型,利用MATLAB软件实现相邻区段干扰电流的数值算法,对轨道电路正常情况、调谐单元故障情况下邻区段干扰电流的分布进行仿真.  相似文献   

2.
以25 Hz相敏轨道电路为例,运用均匀传输线理论分析轨道电路的传输通道,并建立轨道电路系统各传输环节的四端网模型,通过Matlab软件平台对轨道电路进行计算和仿真。  相似文献   

3.
针对当前工程设计环节中电气化复线铁路轨道电路横向连接位置计算完全依靠人工、计算工作量大且准确性不高的情况,在充分考虑模型准确性、设计规范、工程预算、牵引回流性能等因素的前提下,提出一种多线引入情况下的电气化复线铁路轨道电路横向连接位置优化计算方法.首先,构建多线引入情况下的横向连接位置数学模型,并进一步将横线连接位置的...  相似文献   

4.
针对单开道岔区段1送2受型轨道电路电气特性,根据均匀传输线方程与四端网络理论建立典型25 Hz相敏轨道电路仿真计算模型;计算带BE型扼流变压器时轨道电路调整和分路状态下发送电压和电流,结果验证了该模型的正确性和有效性。将模型中的扼流变压器四端网络替换为BES型扼流适配变压器四端网络,从而将该模型拓展应用到带BES的轨道电路区段。根据实测数据计算BES型扼流适配变压器四端网络系数,再采用拓展的仿真模型,计算得到带扼流适配器轨道电路在1送2受区段的调整表。通过计算和分析该轨道电路区段的分路灵敏度和电压余量比可知,二者均满足轨道电路正常工作要求,道岔岔尖是1送2受型轨道电路区段中最易导致分路不良的机械环节。采用该拓展模型仿真计算还可得到轨道电路区段在不同道砟电阻情况的调整表。该模型也可拓展应用于三开、复式交分等道岔区段以及ZPW-2000A型等其他制式轨道电路调整表的计算。  相似文献   

5.
ZPW-2000型移频轨道电路是铁路信号系统的重要基础设备.为分析轨道电路区段间相互关系和调谐区故障对两侧区段的影响,根据ZPW-2000型移频轨道电路的数学模型,采用Simulink仿真工具设计轨道电路各模块的仿真模型,根据该种轨道电路的构成原理和多段轨道电路间的衔接关系,构建ZPW-2000型多段轨道电路仿真模型....  相似文献   

6.
设计了一种基于Visual C#的25 Hz相敏轨道电路计算软件,在测试出轨道电路设备器材参数的基础上,采用均匀传输线理论构建其四端网络模型,分别对轨道电路的调整状态和分路状态进行计算,得出调整状态下各设备器材的输入输出电压、调整功率、分路情况等信息,并采用穷举法估算出轨道区段的道床电阻。最后,通过与标准图册对照和室内试验的方法对软件的计算结果进行了验证,结果准确。  相似文献   

7.
高速铁路车站运营场景复杂,易引发轨道电路邻线干扰,造成信号误解码和误显示,影响列车安全高效运行。基于空间耦合和传导耦合原理,根据高速铁路轨道电路特点和结构,分别建立传输线路阻抗平衡和不平衡条件下的复杂场景邻线干扰计算模型;考虑机车动态运行条件,完成最不利情况下邻线干扰量值的定量计算,并利用ANSYS平台完成计算结果的有限元仿真验证;针对邻线干扰还受到发送电平等级、补偿电容数量和容值、线路并行长度、道床电阻、分路电阻、线路间距等参数叠加和相互制约的影响,采用人工蜂群(Artificial Bee Colony,ABC)智能算法,提出基于多参数协同优化策略的邻线干扰防护对策,给出各参数相应最优取值及其对信干比(Signal-to-Interference Ratio,SIR)影响重要度。结果表明:邻线干扰量值超过车载机车信号灵敏度将导致解码错误;应用提出的防护对策对现场邻线干扰工程案例中线路并行长度和发送电平等参数进行优化,SIR可提升14.6 dB。研究结论可用于高速铁路轨道电路配置及优化实践,为防护邻线干扰提供工程参考和分析验证。  相似文献   

8.
移频轨道电路模型建立及应用   总被引:1,自引:0,他引:1  
轨道电路是铁路信号设备的基础设施,是列车运行自动控制的重要组成部分.针对ZPW2000A移频轨道电路,建立轨道电路模型,采用MATLAB进行验证和分析,并给出模型在轨道电路参数测量中应用的方法.  相似文献   

9.
利用传输线基本理论对无绝缘轨道电路信号的传输特性进行了阐述,分析了各个传输参数的意义以及它们之间的关系,并重点介绍了无绝缘轨道电路钢轨参数测量的实现方法--双短路法.  相似文献   

10.
针对ZPW-2000A轨道电路高频损耗下暂态响应采用现有方法存在的计算难度大、耗时长的问题,提出在复频域内轨道电路接收端轨面电压的求解方法。首先,基于传输线理论,建立轨道电路传输线模型;其次,利用该模型及节点导纳法,得到节点导纳时域方程并对其进行拉普拉斯变换,考虑高频损耗后将复频域方程变换解耦,求得轨道电路接收端轨面电压复频域解;最后,采用傅里叶变换及Q-D算法,得到轨面电压时域解。在对求解方法进行验证的基础上,分析高频损耗、频率、分路电阻、调谐区状态和道床电阻等因素对轨道电路暂态响应的影响。结果表明:与时域有限差分法对比,求解方法的误差在8%以内,且计算耗时短;考虑高频损耗的轨道电路接收端轨面电压小于未考虑高频损耗;轨面电压降随分路电阻的增大而减小,而随道床电阻的增大而增大。求解方法可以准确、高效地分析高频损耗下ZPW-2000A轨道电路暂态响应,可为轨道电路的暂态响应分析提供理论参考。  相似文献   

11.
简单介绍了有限差分法在悬臂梁弯曲计算中的数学模型的建立,对接触网钢柱(以下简称钢柱)各横截面的惯性矩的数学模型的建立作了简单分析,并用该方法对钢柱挠度进行编程计算,其理论计算与实测值比较吻合。在钢柱设计时,用该算法可以快速确定其挠度是否合适,并及时进行调整。在生产中用该算法也可以分析钢柱主,副角钢厚度变化对整个钢柱挠度的影响,从而要求在生产中应严格控制原材料的质量,使其外形尺寸必须符合标准要求。  相似文献   

12.
1概述 随着机械工业的发展,成组技术的应用已经越来越引起人们的重视.它不但被广泛应用于金属的切削加工、冲压和装配等制造工艺,而且在工艺设计、工装夹具等产品的零件设计,以及生产管理等方面都有着广阔的应用前景.  相似文献   

13.
悬索桥主缆初张力对成桥结构性能的影响   总被引:3,自引:0,他引:3  
天津富民桥为单塔空间索面自锚式悬索桥,其主跨主缆由塔顶中点向两侧对称张开至桥面梁端两侧的锚碇,呈空间曲面状态。运用通用有限元分析软件ANSYS,对天津富民桥进行3种不同主缆空缆初张力条件下成桥过程的模拟计算,研究空间索面悬索桥主缆初张力对成桥结构性能的影响。研究结果表明:成桥时,主缆初张力越小,在结构自重作用下主梁底部应力、主缆张力也越小、主塔应力与锚碇应力也越小,主缆初张力的大小对成桥时吊索索力的大小及分布没有明显影响;在活荷载作用下,主缆初张力越小,悬索桥结构体系产生的主缆张力增量则越大,吊索索力增量也越大,即更多的荷载通过吊索传递到主缆,相应地主梁承担的荷载较小,主梁挠度、梁底纵桥向应力随主缆初张力的减小而变小。总之,主缆初张力越小,悬索桥结构体系的性能越佳。  相似文献   

14.
铁路跨越式发展为铁路通信信号事业提供了广阔的发展空间和千载难逢的历史机遇,是推动铁路通信信号事业发展的强大动力,同时也给铁路通信信号技术发展提出了严峻的挑战。面对新机遇和新挑战,2003年,围绕新一代分散自律调度集中(CTC)的开发、中国列车运行控制系统(CTCS)  相似文献   

15.
随着对高速铁路认识的不断加深,作为高速铁路供电系统的主体接触网工程技术不断完善.此文从高速铁路接触网工程特点入手,结合实际工作中编制高速铁路接触网工程概算所遇到的问题,提出解决方法,并就如何客观实际地编制接触网工程概算的有关问题进行探讨.  相似文献   

16.
盛银胜 《铁道车辆》2005,43(5):24-25
提速客车的生产标志着我国的客车设计、工艺、制造水平得到了极大的提高。自提速客车上线运行以来,尽管没有发生重大行车安全事故,但是也暴露了一些问题。如转向架构架、摇枕裂纹,抗侧滚扭杆、横向控制杆、牵引拉杆座断裂等问题,对旅客运输安全构成了威胁。  相似文献   

17.
低温生活污水氨氮深度处理技术、试验研究   总被引:1,自引:0,他引:1  
试验研究了折点加氯去除低温生活污水中氨氮的加药量、pH值、反应时间等工况条件以及工程应用设施,结果表明,采用次氯酸钠折点氯化的方法深度处理氨氮,操作方便,反应迅速完全,脱氮率高,出水氨氮1mg/L以下,达到排放标准。  相似文献   

18.
机车车体调簧试验台的研制   总被引:1,自引:0,他引:1  
为解决车体二系弹簧支撑受力均衡分配问题,开发研究了车体调簧试验台。试验台通过计算机控制,对各个二系弹簧支撑力、各个弹性支点的综合刚度、弹簧压缩量等进行自动检测,并按照调簧程序,对各个二系弹簧座进行模拟加垫操作,最后给出各个二系弹簧座处的实际加垫量、各点的综合刚度、各个二系弹簧的实际承载量等。  相似文献   

19.
宋寅 《铁道货运》2003,(2):26-30
对多种资料中关于起重机运行机构减速器选择过程中的计算输入功率和输出轴强度验算公式进行了理论讨论,并提出了遵循《起重机设计规范》的计算方法。  相似文献   

20.
介绍了轨道交通双线槽形梁的理论分析及设计、施工方法、试验研究,并对其应用前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号